Homoclinic Orbits on Compact Hypersurfaces in \mathbb{R}^{2N} , of Restricted Contact Type

Eric Séré

CEREMADE, Université Paris-Dauphine, Place de Lattre de Tassigny, F-75775 Paris Cedex 16, France

Received: 1 April 1994/in revised form: 1 November 1994

Abstract: Consider a smooth Hamiltonian system in \mathbb{R}^{2N} , $\dot{x} = JH'(x)$, the energy surface $\Sigma = \{x/H(x) = H(0)\}$ being compact, and 0 being a hyperbolic equilibrium. We assume, moreover, that $\Sigma \setminus \{0\}$ is of restricted contact type. These conditions are symplectically invariant. By a variational method, we prove the existence of an orbit homoclinic, i.e. non-constant and doubly asymptotic, to 0.

I. Introduction

The goal of this work is to give a partial answer to a conjecture of Helmut Hofer, about homoclinic orbits in Hamiltonian systems (personal communication). Suppose that Σ is the zero energy surface of an autonomous Hamiltonian H in \mathbb{R}^{2N} having $x_0 \in \Sigma$ as a hyperbolic equilibrium and no other equilibrium on Σ , and that $\Sigma \setminus \{x_0\}$ is of contact type. These conditions are symplectically invariant. The conjecture is that the Hamiltonian system

$$\dot{x} = X_H, \quad X_H = JH'(x), \quad J = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix},$$
 (1.1)

has at least one solution x(t) homoclinic to x_0 , i.e. such that $x \not\equiv x_0$, and $\lim_{|t| \to \infty} x(t) = x_0$. It may be seen as an analogue for homoclinic orbits of the Weinstein conjecture in \mathbb{R}^{2N} , which was solved by Viterbo in 1987 (see [W,V,H-Z]). In the present paper, we replace the contact condition by a restricted contact condition, less general but also symplectically invariant. We find a homoclinic orbit, as the critical point of the action functional associated to a suitably chosen Hamiltonian.

More precisely, we consider the following set of hypotheses on Σ :

($\mathcal{H}1$): Σ is a compact set. It may be defined as $\Sigma = \{x/H(x) = 0\}$, where H is a smooth Hamiltonian defined on \mathbb{R}^{2N} , whose differential H' does not vanish on Σ , except at one point x_0 that we identify with 0 after translation. Moreover, A = H''(0) is non-degenerate.

 $(\mathcal{H}2)$: JA is hyperbolic, i.e. $sp(JA) \cap i\mathbb{R} = \emptyset$.