Entropic Repulsion of the Lattice Free Field

Erwin Bolthausen, Jean-Dominique Deuschel, Ofer Zeitouni

Universität Zürich, Technische Universität Berlin and Technion, D-10623 Berlin, Germany

Received: 28 June 1994/in revised form: 31 October 1994

Abstract: Consider the massless free field on the d-dimensional lattice \mathbb{Z}^d , $d \geq 3$; that is the centered Gaussian field on $\mathbb{R}^{\mathbb{Z}^d}$ with covariances given by the Green function of the simple random walk on \mathbb{Z}^d . We show that the probability, that all the spins are positive in a box of volume N^d , decays exponentially at a rate of order $N^{d-2} \log N$ and compute explicitly the corresponding constant in terms of the capacity of the unit cube. The result is extended to a class of transient random walks with transition functions in the domain of the normal and α -stable law.

1. Introduction and Result

Let $Q = \{Q(k, j), k, j \in \mathbb{Z}^d\}$ be the transition matrix of a symmetric *transient* random walk on the *d*-dimensional lattice \mathbb{Z}^d . More specifically we will be interested in two types of situations:

(a) $d \ge 3$, Q is the transition function of the simple random walk:

$$Q(i,k) = \begin{cases} \frac{1}{2d} & \text{if } |i-k| = 1, \\ 0 & \text{otherwise}. \end{cases}$$

(b) $d \ge 1, q_{\alpha}$ is the density of the symmetric isotropic α -stable law on \mathbb{R}^d for some $0 < \alpha < 2 \land d$, see (A.1),

$$Q(i,k) = \int_{V} q_{\alpha}(x + (i-k)^{+}) dx,$$

where
$$V = [-\frac{1}{2}, \frac{1}{2}]^d$$
, $(j)^+ = (|j_1|, |j_2|, \dots, |j_d|)$.

Let $G = \sum_{n=0}^{\infty} Q^n$ be the corresponding Green function. Then it is well known that

$$\lim_{|k-j|\to\infty}\frac{G(j,k)}{g_{\alpha}(j-k)}=1\;,$$

The authors acknowledge support from the Swiss National Science Foundation, grant 21–29833.90 This research was partially supported by the foundation for promotion of research at the Technion.