Scaling for a Random Polymer

R. van der Hofstad¹, F. den Hollander²

- ¹ Mathematical Institute, University of Utrecht, P.O. Box 80,010, 3508 TA Utrecht, The Netherlands
- ² Mathematical Institute, University of Nijmegen, Toernooiveld 1, NL-6525 ED Nijmegen, The Netherlands

Received: 12 March 1994/in revised form: 12 July 1994

Abstract: Let Q_n^{β} be the law of the *n*-step random walk on \mathbb{Z}^d obtained by weighting simple random walk with a factor $e^{-\beta}$ for every self-intersection (Domb-Joyce model of "soft polymers"). It was proved by Greven and den Hollander (1993) that in d=1 and for every $\beta \in (0,\infty)$ there exist $\theta^*(\beta) \in (0,1)$ and $\mu_{\beta}^* \in \{\mu \in l^1(\mathbb{N}) : \|\mu\|_{l^1} = 1, \mu > 0\}$ such that under the law Q_n^{β} as $n \to \infty$:

- (i) $\theta^*(\beta)$ is the limit empirical speed of the random walk;
- (ii) μ_B^* is the limit empirical distribution of the local times.

A representation was given for $\theta^*(\beta)$ and μ_{β}^* in terms of a largest eigenvalue problem for a certain family of $\mathbb{N} \times \mathbb{N}$ matrices. In the present paper we use this representation to prove the following scaling result as $\beta \downarrow 0$:

(i)
$$\beta^{-\frac{1}{3}}\theta^*(\beta) \to b^*;$$

(ii) $\beta^{-\frac{1}{3}}\mu_{\beta}^*(\lceil \cdot \beta^{-\frac{1}{3}} \rceil) \to^{L^1} \eta^*(\cdot).$

The limits $b^* \in (0, \infty)$ and $\eta^* \in \{ \eta \in L^1(\mathbb{R}^+) : ||\eta||_{L^1} = 1, \eta > 0 \}$ are identified in terms of a Sturm-Liouville problem, which turns out to have several interesting properties.

The techniques that are used in the proof are functional analytic and revolve around the notion of epi-convergence of functionals on $L^2(\mathbb{R}^+)$. Our scaling result shows that the speed of soft polymers in d=1 is not right-differentiable at $\beta=0$, which precludes expansion techniques that have been used successfully in $d \ge 5$ (Hara and Slade (1992a, b)). In simulations the scaling limit is seen for $\beta \le 10^{-2}$.

0. Introduction and Main Results

0.1. Model and Motivation. A polymer is a long chain of molecules with two characteristic properties: (i) an irregular shape (due to entanglement); (ii) a certain stiffness (due to sterical hindrance). One way of describing such a polymer is the following model, which is based on a random walk with self-repellence.