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Abstract: We prove the decomposition formula for the n-invariant of the compatible
Dirac operator on a closed manifold M which is a sum of two submanifolds with
common boundary.

0. Introduction

Let M be a compact odd-dimensional Riemannian manifold without boundary. Let
A C®(S) — C*°(S) denote a compatible Dirac operator acting on sections of a
bundle of Clifford modules S over M (see [6,8]). Then 4 is a self-adjoint elliptic
operator. It has a discrete spectrum {4;};cz. We define the eta function of the
operator 4 as follows:
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Now #(4;s) is a holomorphic function of s for Re(s) > dim(M), and it has
a meromorphic extension to C, with isolated simple poles on the real axis and
locally computable residue (see [1,8,13]). In particular, we know that if 4 is a
compatible Dirac operator, then #(4;s) is holomorphic for Re(s) > —2. The value
of n(4;s) at s =0 is an important invariant of the operator, the bundle, and the
manifold. We call #(4;0) the eta invariant of 4 and denote it by 74. We use the
heat representation for the eta function and obtain the following formula for #,:
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In this paper we study the decomposition of 7, into the contributions coming
from different parts of the manifold M. The problem here is that #, is not given
by the local formula and it depends on the global geometry of the manifold and
the operator (see [1,13]). Therefore it is somewhat surprising that we can present
a satisfactory result.
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