

Strong Magnetic Fields, Dirichlet Boundaries, and Spectral Gaps

Rainer Hempel¹, Ira Herbst^{2,3}

Erwin Schrödinger International Institute for Mathematical Physics, Pasteurgasse 4/7, A-1090 Vienna, Austria

Received: 1 January 1994/in revised form: 11 May 1994

Abstract: We consider magnetic Schrödinger operators

$$H(\lambda \vec{a}) = (-i\nabla - \lambda \vec{a}(x))^2$$

in $L_2(\mathbf{R}^n)$, where $\vec{a} \in C^1(\mathbf{R}^n; \mathbf{R}^n)$ and $\lambda \in \mathbf{R}$. Letting $M = \{x; B(x) = 0\}$, where B is the magnetic field associated with \vec{a} , and $M_{\vec{a}} = \{x; \vec{a}(x) = 0\}$, we prove that $H(\lambda \vec{a})$ converges to the (Dirichlet) Laplacian on the closed set M in the strong resolvent sense, as $\lambda \to \infty$, provided the set $M \setminus M_{\vec{a}}$ has measure zero.

In various situations, which include the case of periodic fields, we even obtain norm resolvent convergence (again under the condition that $M \setminus M_{\vec{a}}$ has measure zero). As a consequence, if we are given a periodic field *B* where the regions with B = 0 have non-empty interior and are enclosed by the region with $B \neq 0$, magnetic wells will be created when λ is large, opening up gaps in the spectrum of $H(\lambda \vec{a})$.

We finally address the question of absolute continuity of $H(\vec{a})$ for periodic \vec{a} .

0. Introduction

While the resolvent-limit of the Schrödinger operators $-\Delta + \lambda \chi_{\Omega}$, as $\lambda \to \infty$, has been thoroughly studied (cf., e. g., Herbst and Zhao [HZh], Arendt and Batty [AB]), it seems that little – if anything at all – is known about the corresponding situation of magnetic perturbations of the Laplacian,

$$H(\lambda \vec{a}) = (-i\nabla - \lambda \vec{a})^2$$
,

as $\lambda \to \infty$, where \vec{a} is a vector potential on \mathbf{R}^n of class C^1 or C^2 . Recalling that, for Ω an open subset of \mathbf{R}^n , the strong resolvent limit of $-\Delta + \lambda \chi_{\Omega}$ is given by $-\Delta_M$,

¹ Department of Mathematics, Univ. of Alabama at Birmingham, Birmingham, AL 35294-1170, USA. Part of this work was done while on leave from Mathemat. Institut, Univ. München, Theresienstr. 39, D-80333 München, Germany.

² On leave from Univ. of Virginia, Charlottesville, VA 22903, USA.

³ Research partially supported by USNSF grant DMS 9307147.