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Abstract: We consider the canonical symplectic structure on the moduli space of
flat g-connections on a Riemann surface of genus g with n marked points. For
% being a semisimple Lie algebra we obtain an explicit efficient formula for this
symplectic form and prove that it may be represented as a sum of n copies of
Kirillov symplectic form on the orbit of dressing transformations in the Poisson—
Lie group G* and g copies of the symplectic structure on the Heisenberg double of
the Poisson—Lie group G (the pair (G, G*) corresponds to the Lie algebra «).

1. Introduction

Being an interesting object of investigations, the moduli space of flat connections
on a Riemann surface attracted the attention of many physicists and mathematicians
when its relation to the Chern—Simons theory had been discovered [12]. By defini-
tion the moduli space (we shall often refer to the moduli space of flat connections
in this way) is a quotient of the infinite dimensional space of flat connections over
the infinite dimensional gauge group. It is remarkable that this quotient appears to
be finite dimensional.

The moduli space .# carries a nondegenerate symplectic structure [3]. It implies
the existence of a nondegenerate Poisson bracket on .#. Recently the combinato-
rial description of the moduli space has been suggested [5]. The main idea is to
represent the same space .# as a quotient of the finite dimensional space & over
the finite dimensional group action. The Poisson structure has been defined on 2
and proved to reproduce the canonical Poisson structure on the moduli space after
reduction.

In the first part of this paper we give a combinatorial description of the canonical
symplectic structure on .# (see Theorem 1, Sect. 3). This is a bit more natural
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