Positive Lyapunov Exponents for a Class of Deterministic Potentials

Victor Chulaevsky¹, Thomas Spencer²

¹ Institute for Mathematical Problems in Biology, Pushchino, Russia

² Institute for Advanced Study, Princeton, New Jersey 08540, USA

Received: 1 June 1993 / in revised form: 6 July 1994

Abstract: Let $V(\theta)$ be a smooth, non-constant function on the torus and let T be a hyperbolic toral automorphism. Consider a discrete one dimensional Schrödinger operator H, whose potential at site j is given by $gV_j = gV(T^j\theta)$. We prove that when $g \ge 0$ is small and $g^{1/2} \le |E| \le 2 - g^{1/2}$, the Lyapunov exponent for the cocycle generated by H-E is proportional to g^2 . The proof relies on a formula of Pastur and Figotin and on symbolic dynamics.

1. Introduction

In this paper we study the Lyapunov exponent of Schrödinger operators on a one dimensional lattice with an ergodic potential. To define an ergodic potential, let T be an ergodic, measure preserving transformation of a measure space Θ with invariant measure dv. Let the potential at site n be $V_n(\theta) = V(T^n(\theta))$ where V is a measurable function on Θ . The discrete Schrödinger operator we shall study is given by

$$(H - E)\psi_n = (H(\theta) - E)\psi_n = \psi_{n+1} + \psi_{n-1} + [gV_n(\theta) - E]\psi_n.$$
 (1)

Here g>0 is the coupling constant and ψ is a real valued function on the integer lattice. The Lyapunov exponent defined by

$$\gamma(E) = \lim_{N \to \infty} \frac{\log[|\psi_N|^2 + |\psi_{N+1}|^2]}{2N} \ge 0$$
 (2)

is constant almost everywhere on Θ and independent of the initial values of ψ .

If g > 0 and V_j are independent random variables or V comes from a Markov process, positivity of $\gamma(E)$ was proved long ago by Furstenberg [1], Virtser [2], see [3,4] for a review. More generally, Simon [5, b], following the original work by Kotani [5, a] who studied the continuous case, has shown that if the potential of the discrete one-dimensional Schrödinger operator is not determined from values in the past (the class of non-deterministic potentials) then for almost all energies E, the Lyapunov exponent is positive.