© Springer-Verlag 1995 ## U (1) Gauge Theory on a Torus Yu. M. Zinoviev^{⋆,⋆⋆} Steklov Mathematical Institute, Vavilov St. 42, Moscow 117966, GSP-1, Russia Received: 8 February 1993/in revised form: 26 April 1994 **Abstract:** U(1) gauge theory with the Villain action on a cubic lattice approximation of three- and four-dimensional torus is considered. As the lattice spacing approaches zero, provided the coupling constant correspondingly approaches zero, the naturally chosen correlation functions converge to the correlation functions of the \mathbf{R} -gauge electrodynamics on three- and four-dimensional torus. When the torus radius tends to infinity these correlation functions converge to the correlation functions of the \mathbf{R} -gauge Euclidean electrodynamics. ## 1. Introduction The compact lattice gauge field theory models introduced by K. Wilson [1] preserve the differential geometric structures of the continuum theory. This paper is concerned with the case where the gauge group is $U(1) = \mathbf{R}/2\pi\mathbf{Z}$. Let $h(\theta)$ be a real twice continuously differentiable even periodic function with period 2π . Any such function will be called an energy function. The main examples of interest are the Wilson [1] energy function $h(\theta) = 1 - \cos \theta$ and the Villain [2] energy function $$\exp\left[-\beta h_{\beta}(\theta)\right] = c_{\beta} \sum_{n=-\infty}^{\infty} \exp\left[-\beta(\theta - 2\pi n)^{2}/2\right], \tag{1.1}$$ where $\beta > 0$ and c_{β} is a constant chosen so that the right-hand side is one for $\theta = 0$. Let e_i , $i=1,\ldots,d$ be the standard unit vectors in \mathbf{R}^d , and p be a non-negative integer less than d. The p-cells based at $\mathbf{m} \in \mathbf{Z}^d$ are the formal symbols: (\mathbf{m} ; e_{i_1},\ldots,e_{i_p}), where the unit vectors differ from each other. Let G be one of three abelian groups: \mathbf{Z} , \mathbf{R} and $U(1) = \mathbf{R}/2\pi\mathbf{Z}$. A p-cochain Let G be one of three abelian groups: \mathbf{Z} , \mathbf{R} and $U(1) = \mathbf{R}/2\pi\mathbf{Z}$. A p-cochain with the coefficients in G is a G-valued function on p-cells $f(\mathbf{m}; e_{i_1}, \dots, e_{i_p}) \equiv f_{i_1 \dots i_p}(\mathbf{m})$ which is antisymmetric under the permutations of the indices i_1, \dots, i_p . ^{*} Supported by the Russian Foundation of Fundamental Researches under Grant 93-011-147 ^{**} e-mail: zinoviev@mian.su