Commun. Math. Phys. 167, 155–182 (1995)

Aspects of Fractional Superstrings

Gerald B. Cleaver,¹ Philip J. Rosenthal²

California Institute of Technology, Pasadena, CA, 91125, USA

Received: 19 July 1993/in revised form: 18 February 1994

Abstract: We investigate some issues relating to recently proposed fractional superstring theories with $D_{\text{critical}} < 10$. Using the factorization approach of Gepner and Qiu, we systematically rederive the partition functions of the K = 4, 8, and 16 theories and examine their spacetime supersymmetry. Generalized GSO projection operators for the K = 4 model are found. Uniqueness of the twist field, $\phi_{K/4}^{K/4}$, as source of spacetime fermions is demonstrated.

Section 1: Introduction

In the last few years, several generalizations of standard (supersymmetric) string theory have been proposed [20, 28, 25, 22]. One of them [16, 7, 10, 6, 9, 14, 15, 13] uses the (fractional spin) parafermions introduced from the perspective of 2-D conformal field theory (CFT) by Zamolodchikov and Fateev [31] in 1985 and further developed by Gepner and Qiu [18].³ In a series of papers, possible new string theories with local parafermionic world sheet currents (of fractional conformal spin) giving critical dimensions D = 6, 4, 3, and 2 have been proposed [16, 7, 10, 6, 9].

At the heart of these new "fractional superstrings" are \mathbb{Z}_K parafermion conformal field theories (PCFT's) with central charge c = 2(K - 1)/(K + 2). (Equivalently, these are $SU(2)_K/U(1)$ conformal field theories.) The (integer) level-K PCFT

Work supported in part by the U.S. Department of Energy under Contract no. DEAC-03-81ER40050

¹ gcleaver@theory3.caltech.edu.

² phil@theory3.caltech.edu.

³ This is not to be confused with the original definition of "parafermions." The term "parafermion" was introduced by H.S. Green in 1953 [19]. Green's parafermions are defined as spin-1/2 particles that do not obey standard anticommutation rules, but instead follow more general trilinear relations [5, 27, 12, 3, 21].