Commun. Math. Phys. 166, 1-26 (1994)

Periodic Nonlinear Schrödinger Equation and Invariant Measures

J. Bourgain

I.H.E.S., 35, route de Chartres, F-911440 Bures-sur-Yvette, France

Received: 27 October 1993 / in revised form: 21 June 1994

Abstract: In this paper we continue some investigations on the periodic NLSE $iu_t + u_{xx} + u|u|^{p-2} = 0$ ($p \le 6$) started in [LRS]. We prove that the equation is globally wellposed for a set of data ϕ of full normalized Gibbs measure $e^{-\beta H(\phi)}Hd\phi(x), H(\phi) = \frac{1}{2}\int |\phi'|^2 - \frac{1}{p}\int |\phi|^p$ (after suitable L^2 -truncation). The set and the measure are invariant under the flow. The proof of a similar result for the KdV and modified KdV equations is outlined. The main ingredients used are some estimates from [B1] on periodic NLS and KdV type equations.

1. Introduction

Consider the nonlinear Schrödinger equation (NLSE) in the space periodic setting

$$iu_t + u_{xx} + u|u|^{p-2} = 0, (1.1)$$

where u is a function on $\pi \times \mathbb{R}$ on $\pi \times I$ (I = an interval $[0, \tau]$) with an initial condition

$$u(x,0) = \varphi(x), \qquad (1.2)$$

where φ is a periodic function of x. Here π stands for the circle, i.e. \mathbb{R}/\mathbb{Z} .

In the nonperiodic case (replacing π by \mathbb{R}), the Cauchy problem for (1.1)–(1.2) is well understood (see for instance [G-V]). One has a local solution (in the generalized sense) for (1.1) if $p-2 \leq \frac{4}{1-2s}$ and data $\varphi \in H^s(\mathbb{R}), s \geq 0$. The exponent $\frac{4}{1-2s}$ is called H^s -critical (in 1 space dimension). If $p \geq 6$, there is even for smooth data a possible blow up. In this discussion, the existence result is in fact a global (or local) wellposedness theorem, in the sense of uniqueness and regularity.

In [B1], we have developed a parallel theory in the periodic case, although incomplete so far. The following facts are shown in [B1].

Theorem 1. (p = 4) The cauchy problem¹

¹ The result holds both in focusing and defocusing case (with same proof).