

## Tau Functions for the Dirac Operator on the Poincaré Disk

John Palmer<sup>1</sup>, Morris Beatty<sup>2</sup>, Craig A. Tracy<sup>2</sup>

 <sup>1</sup> Department of Mathematics, University of Arizona, Tucson, AZ 85721, USA
<sup>2</sup> Department of Mathematics and Institute of Theoretical Dynamics, University of California, Davis, CA 95616, USA

Received: 18 September 1993/in revised form: 7 January 1994

**Abstract:** In this paper we define tau functions for holonomic fields associated with the Dirac operator on the Poincaré disk. The deformation analysis of the tau functions is worked out and in the case of the two point function, the tau function is expressed in terms of a Painlevé function of type VI.

## Table of Contents

| In | troduction                                                         | 98  |
|----|--------------------------------------------------------------------|-----|
| 1  | The Dirac operator on the Hyperbolic disk                          | 101 |
|    | A covering of the frame bundle.                                    | 101 |
|    | The Dirac operator                                                 | 104 |
|    | Covariance of the Dirac operator                                   | 106 |
| 2  | Local Expansions                                                   | 109 |
|    | Eigenfunctions for infinitesimal rotations                         | 109 |
|    | Differentiating local expansions with respect to the branch points | 115 |
|    | Estimates at infinity                                              | 118 |
| 3  | $L^2$ existence results                                            | 121 |
|    | A model for the simply connected covering $D_R(a)$                 | 121 |
|    | Multivalued solutions with specified branching                     | 123 |
|    | Existence for a canonical $L^2$ basis                              | 127 |
|    | The response functions                                             | 129 |
| 4  | The Green function $G^{a,\lambda}$ for the Dirac operator          | 131 |
|    | Green functions in the absence of branch points                    | 131 |
|    | The Green function for the Helmholtz operator with branch points   | 134 |
|    | The Green function for the Dirac operator with branch points       | 140 |
|    | The derivative of the Green function $G^{a,\lambda}$               | 142 |
| 5  | Deformation Equations                                              | 145 |
|    | A holonomic system                                                 | 145 |
|    | The holonomic extension                                            | 149 |