

Asymptotic Stability of Traveling Waves for Scalar Viscous Conservation Laws with Non-convex Nonlinearity

Akitaka Matsumura¹, Kenji Nishihara²

¹ Department of Mathematics, Osaka University, Osaka 560, Japan

² School of Political Science and Economics, Waseda University, Tokyo 169-50, Japan

Received: 15 September 1993

Abstract: The asymptotic stability of traveling wave solutions with shock profile is considered for scalar viscous conservation laws $u_t + f(u)_x = \mu u_{xx}$ with the initial data u_0 which tend to the constant states u_{\pm} as $x \to \pm \infty$. Stability theorems are obtained in the absence of the convexity of f and in the allowance of s (shock speed) = $f'(u_{\pm})$. Moreover, the rate of asymptotics in time is investigated. For the case $f'(u_{\pm}) < s < f'(u_{\pm})$, if the integral of the initial disturbance over $(-\infty, x)$ is small and decays at the algebraic rate as $|x| \to \infty$, then the solution approaches the traveling wave at the corresponding rate as $t \to \infty$. This rate seems to be almost optimal compared with the rate in the case $f = u^2/2$ for which an explicit form of the solution exists. The rate is also obtained in the case $f'(u_{\pm}) = s$ under some additional conditions. Proofs are given by applying an elementary weighted energy method to the integrated equation of the original one. The selection of the weight plays a crucial role in those procedures.

1. Introduction

We consider the Cauchy problem for scalar viscous conservation laws:

$$u_t + f(u)_x = \mu u_{xx}, \quad x \in \mathbf{R}, \ t > 0 ,$$
 (1.1)

$$u(0, x) = u_0(x), \quad x \in \mathbf{R}$$
, (1.2)

where $f \in C^2$ under consideration, μ is a positive constant and the initial data $u_0(x)$ is asymptotically constant as $x \to \pm \infty$:

$$u_0(x) \to u_+ \quad \text{as} \quad x \to \pm \infty \ .$$
 (1.3)

Let Eq. (1.1) admit traveling wave solutions with shock profile such that

$$u = U(x - st) \equiv U(\xi), \quad U(\xi) \to u_{\pm} \quad \text{as} \quad \xi \to \pm \infty ,$$
 (1.4)

where the constants u_+ and s (shock speed) satisfy the Rankine–Hugoniot condition

$$-s(u_{+}-u_{-})+f(u_{+})-f(u_{-})=0, \qquad (1.5)$$