

Operators with Singular Continuous Spectrum: II. Rank One Operators

R. Del Rio^{1,3}, N. Makarov², B. Simon³

Division of Physics, Astronomy and Mathematics, California Institute of Technology, 253-37, Pasadena, CA 91125, U.S.A.

Received: 12 July 1993/in revised form October 25, 1993

Abstract: For an operator, A, with cyclic vector φ , we study $A + \lambda P$, where P is the rank one projection onto multiples of φ . If $[\alpha, \beta] \subset \operatorname{spec}(A)$ and A has no a.c. spectrum, we prove that $A + \lambda P$ has purely singular continuous spectrum on (α, β) for a dense G_{δ} of λ 's.

1. Introduction

The subject of rank one perturbations of self-adjoint operators and the closely related issue of the boundary condition dependence of Sturm-Liouville operators on $[0, \infty)$ has a long history. We're interested here in the connection with Borel-Stieltjes transforms of measures (Im z > 0):

$$F(z) = \int \frac{d\rho(x)}{x - z}, \qquad (1.1)$$

where ρ is a measure with

$$\int (|x|+1)^{-1} d\rho(x) < \infty .$$
 (1.2)

In two fundamental papers Aronszajn [1] and Donoghue [5] related F to spectral theory with important later input by Simon–Wolff [13]. In all three works, as in ours, the function (y real)

$$G(y) = \int \frac{d\rho(x)}{(x-y)^2}$$

¹ Permanent address: IIMAS-UNAM, Apdo. Postal 20-726, Admon. No. 20, 01000 Mexico D.F., Mexico. Research partially supported by DGAPA-UNAM and CONACYT. ² This material is based upon work suported by the National Science Foundation under

Grant No. DMS-9207071. The Government has certain rights in this material.

³ This material is based upon work supported by the National Science Foundation under Grant No. DMS-9101715. The Government has certain rights in this material.