The Existence of Non-Minimal Solutions of the Yang-Mills-Higgs Equations Over R^3 with Arbitrary Positive Coupling Constant

L. M. Sibner^{1, *}, J. Talvacchia^{2, **}

 ¹ Department of Mathematics, Polytechnic University of New York, Brooklyn, NY 11201, USA. Email: lsibner@photon.poly.edu
² Department of Mathematics, Swarthmore College, Swarthmore, PA 19081, USA. Email: jtalvac1@cc.swarthmore.edu

Received: 29 June 1992/in revised form: 6 January 1994

Abstract: This paper proves the existence of a non-trivial critical point of the SU(2) Yang-Mills-Higgs functional on R^3 with arbitrary positive coupling constant. The critical point lies in the zero monopole class but has action bounded strictly away from zero.

1. Introduction

This paper establishes the existence of a non-globally-minimizing critical point with monopole number zero for the SU(2) Yang-Mills-Higgs equations on R^3 with positive coupling constant λ . The Yang-Mills-Higgs equation on R^3 are a system of second order non-linear equations:

$$\begin{split} * \, D_A * F &= [D_A \phi, \phi] \qquad \qquad \text{YMH} \lambda(1) \,, \\ * \, D_A * D_A \phi &= \frac{\lambda}{2} \phi(|\phi|^2 - 1) \qquad \qquad \text{YMH} \lambda(2) \,. \end{split}$$

Here, the variables are A, a connection on a principal SU(2) bundle and ϕ , a section of the vector bundle $E = su(2) \times R^3$ called the Higgs field. D_A is covariant differentiation and F is the curvature of the connection A, $F = dA + A \wedge A$.

These equations can be viewed as the variational equations of the action functional:

$$\mathbf{A}(A,\phi) = \frac{1}{2} \|F_A\|_2^2 + \frac{1}{2} \|D_A\phi\|_2^2 + \frac{\lambda}{8} \||\phi|^2 - 1\|_2^2.$$

If we restrict to finite action solutions, then the Higgs field approaches an asymptotic limit. Namely we have

$$\lim_{|x|\to\infty} |\phi(x)| = 1\,,$$

^{*} Supported in part by NSF Grant DMS-9200576.

^{**} Supported in part by NSF Grant DMS-9109491.