An Identification of the Connections of Quillen and Beilinson–Schechtman

Yue Lin L. Tong,^{1*} I-Hsun Tsai^{2**}

¹ Purdue University, West Lafayette, IN 47907, USA

² National Taiwan University, Taipei, Taiwan

Received: 20 January 1993

Abstract: Given a family of Riemann surfaces and a holomorphic vector bundle Beilinson and Schechtman construct a canonical connection on the associated determinant bundle. We prove the conjecture which states that their connection coincides with the Quillen connection. This is done by reducing to the case where $\overline{\partial}$ along fibers are invertible. Both connection forms become more accessible in this case.

Introduction

Let $\pi: X \to S$ be the parametrization of a family of compact Riemann surfaces, $E \to X$ a holomorphic vector bundle, and $\lambda_E = \det(R\pi_*E)$ the determinant bundle over S. Given C^{∞} connections on $T_{X/S}$ and E, not necessarily arising from metrics, Beilinson and Schechtman [BS, §5] construct a formal parametrix $p(z, \zeta)$ for $\overline{\partial}_z$ ($\overline{\partial}$ along the fibers) and using p they derive a (1, 0) connection ∇_{BS} on λ_E . These are given by local formulas in terms of $\nabla_{T_{X/S}}$ and ∇_E and fiber integrals. Local calculations show that the (1, 1) curvature $\overline{\partial}_S \nabla_{BS}$ is equal as a differential form to the fiber integral prescribed by the Grothendieck Riemann Roch formula. The only nonelementary part of the connection ∇_{BS} is in identifying it with splittings of complexes on X, which depends on the relative duality theorem.

On λ_E^{-1} of course there is the well known Quillen metric and the associated Quillen connection ∇_Q determined by metrics on $T_{X/S}$ and E. For locally Kähler families of compact complex manifolds the form level Grothendieck Riemann Roch for curvature of ∇_Q is known [BF, BGS]. Beilinson–Schechtman remark in [BS, 5.6]: "It seems very probable" that when ∇_E , $\nabla_{T_{X/S}}$ arise from hermitian metrics on E, $T_{X/S}$, then ∇_{BS} is just the connection associated to the Quillen metric for λ_E .

^{*} Supported in part by N.S.F. Grant No. DMS-9201022

^{**} Supported in part by National Science Council of Republic of China Grant No. NSC 82-0208-M-002-125-T, and NSERC of Canada Grant No. OGP 0121883