Commun. Math. Phys. 158, 459-483 (1993)

Cyclic Monodromy Matrices for *sl(n)* Trigonometric *R*-Matrices

Vitaly Tarasov

Physics Department, Leningrad University, Leningrad 198904, Russia

Received: 13 November 1992/in revised form: 18 February 1993

Abstract: The algebra of monodromy matrices for sl(n) trigonometric *R*-matrix is studied. It is shown that a generic finite-dimensional polynomial irreducible representation of this algebra is equivalent to a tensor product of *L*-operators. Cocommutativity of representations is discussed and intertwiners for factorizable representations are written through the Boltzmann weights of the sl(n) chiral Potts model.

Introduction

Let us consider an algebra generated by noncommutative entries of the matrix T(u) satisfying the famous bilinear relation originated from the quantum inverse scattering method [13, 20]

$$R(\lambda - \mu)T(\lambda)T(\mu) = T(\mu)T(\lambda)R(\lambda - \mu),$$

where $R(\lambda)$ is R-matrix – a solution of the Yang-Baxter equation. For historical reasons this algebra is called the algebra of monodromy matrices. It possesses a natural bialgebra structure with the coproduct (1.5). If g is a simple finitedimensional Lie algebra and $R(\lambda)$ is a g-invariant R-matrix the algebra of monodromy matrices after a proper specialization gives the Yangian Y(g) introduced by Drinfeld [11]. If $R(\lambda)$ is the corresponding trigonometric R-matrix [2, 14] (see (1.1) for sl(n) case) this algebra is closely connected with $U_q(g)$ and $U_q(\hat{g})$ at zero level [11, 14, 15, 22, 23]. In the last case it is convenient to use a new variable $u = \exp \lambda$ rather than λ . If $R(\lambda)$ is sl(2) elliptic R-matrix [1, 5] the algebra of monodromy matrices gives rise to Sklyanin's algebra [24].

In this paper we shall study algebras of monodromy matrices for sl(n) trigonometric *R*-matrices [6, 19, 21]. In the framework of the quantum inverse scattering method finite-dimensional irreducible representations of these algebras which depend polynomially on the spectral parameter u are of special interest. They correspond to integrable models on a finite lattice. *L*-operators are irreducible representations with linear dependence on the spectral parameter, and usually we