

Quantum Group Gauge Theory on Quantum Spaces

Thomasz Brzeziński*, Shahn Majid**

Department of Applied Mathematics and Theoretical Physics University of Cambridge, CB3 9EW, U.K.

Received: 1 June 1992/in revised form: 30 March 1993

Abstract: We construct quantum group-valued canonical connections on quantum homogeneous spaces, including a q-deformed Dirac monopole on the quantum sphere of Podles with quantum differential structure coming from the 3D calculus of Woronowicz on $SU_q(2)$. The construction is presented within the setting of a general theory of quantum principal bundles with quantum group (Hopf algebra) fibre, associated quantum vector bundles and connection one-forms. Both the base space (spacetime) and the total space are non-commutative algebras (quantum spaces).

Contents

1.	Introduction							591
2.	Preliminaries About Universal Differential Calculus							594
3.	Gauge Fields on Trivial Quantum Vector Bundles							596
4.	Quantum Principal Bundles and Connections on Them .							601
	4.1 The Case of Universal Differential Calculus							602
	4.2 The Case of General Quantum Differential Calculi .							611
5.	Examples							614
	5.1 Bundles on Quantum Homogeneous Spaces							615
	5.2 Dirac Monopole Bundle and its Canonical Connection							621
A.	Appendix: Quantum Associated Vector Bundles							631
B.	Appendix: Quantum Matrix Case of the Local Picture .							636
Pe.	ferences							638

1. Introduction

Non-commutative geometry is based on the simple idea that in place of working with the points on a space or manifold M we may work equivalently with the algebra C(M)

^{*} Supported by St. John's College, Cambridge and KBN grant 202189101

^{**} SERC Fellow and Drapers Fellow of Pembroke College, Cambridge