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Abstract. The Kadomtsev—Petviashvili (KP) hierarchy is considered together with
the evolutions of eigenfunctions and adjoint eigenfunctions. Constraining the KP
flows in terms of squared eigenfunctions one obtains 1 + 1-dimensional integrable
equations with scattering problems given by pseudo-differential Lax operators.
The bi-Hamiltonian nature of these systems is shown by a systematic construction
of two general Poisson brackets on the algebra of associated Lax-operators. Gauge
transformations provide Miura links to modified equations. These systems are
constrained flows of the modified KP hierarchy, for which again a general descrip-
tion of their bi-Hamiltonian nature is given. The gauge transformations are shown
to be Poisson maps relating the bi-Hamiltonian structures of the constrained KP
hierarchy and the modified KP hierarchy. The simplest realization of this scheme
yields the AKNS hierarchy and its Miura link to the Kaup-Broer hierarchy.
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1. Introduction

Many finite dimensional integrable systems arise from partial differential equations
in soliton theory. Typical reduction schemes from partial to ordinary differential
equations involve pole expansions [1, 2] or stationary flows [3] and reductions to
pure soliton submanifolds [4]. For the latter case a systematic “nonlinearization”
procedure was proposed by Cao [5]. The main idea is that squared eigenfunctions



