Commun. Math. Phys. 155, 569-640 (1993)

Operator Algebras and Conformal Field Theory

Fabrizio Gabbiani and Jürg Fröhlich

Institut für Theoretische Physik, ETH-Hönggerberg, CH-8093 Zürich, Switzerland

Received October 7, 1992; in revised form February 19, 1993

Abstract. We define and study two-dimensional, chiral conformal field theory by the methods of algebraic field theory. We start by characterizing the vacuum sectors of such theories and show that, under very general hypotheses, their algebras of local observables are isomorphic to the unique hyperfinite type III₁ factor. The conformal net determined by the algebras of local observables is proven to satisfy Haag duality. The representation of the Moebius group (and presumably of the entire Virasoro algebra) on the vacuum sector of a conformal field theory is uniquely determined by the Tomita-Takesaki modular operators associated with its vacuum state and its conformal net. We then develop the theory of Moebius covariant representations of a conformal net, using methods of Doplicher, Haag and Roberts. We apply our results to the representation theory of loop groups. Our analysis is motivated by the desire to find a "background-independent" formulation of conformal field theories.

Contents

I.	Introduction	570
II.	Structure of the vacuum representation of a conformal field theory	574
	II.1 Conformal nets of operator algebras	574
	II.2 Moebius covariance and Tomita-Takesaki modular operators; Haag duality	581
	II.3 Local internal symmetries of vacuum sectors	587
III.	The conformal nets associated to positive-energy representations of loop groups	591
	III.1 Simple, simply laced Lie algebras and groups	591
	III.2 The affine Lie algebra $\hat{\mathscr{G}}$ associated with \mathscr{G}	592
	III.3 The loop group LG_0 and its central extension \widehat{LG}_0	593
	III.4 The local structure of LG_0 and \widehat{LG}_0	595
	III.5 The extension of $\hat{\mathscr{S}}$ by the Virasoro algebra $\ldots \ldots \ldots \ldots \ldots \ldots \ldots$	596
	III.6 The root space decomposition of $\hat{\mathscr{G}}^e$; dominant integral weights	597
	III.7 Properties of irreducible integrable highest weight modules of $\hat{\mathscr{S}^e}$	598

^{*} Typeset using TEX