Commun. Math. Phys. 155, 561-568 (1993)



## **Invariants of 2+1 Gravity**

## J. E. Nelson and T. Regge

Dipartimento di Fisica Teorica dell'Università di Torino, Via Pietro Giuria 1, I-10125 Torino, Italy

Received September 2, 1992; in revised form February 5, 1993

**Abstract.** In [1, 2] we established and dicussed the algebra of observables for 2 + 1 gravity at both the classical and quantum level. Here our treatment broadens and extends previous results to any genus g with a systematic discussion of the centre of the algebra. The reduction of the number of independent observables to 6g - 6(g > 1) is treated in detail with a precise classification for g = 1 and g = 2.

## 1. Introduction

In previous articles [1, 2] we analysed the algebra of quantum observables for 2 + 1 gravity on an initial data Riemann surface of genus g. The homotopy group  $\pi_1(\Sigma)$  of the surface is defined by generators  $t_i$ ,  $i = 1 \dots 2g + 2$  and presentation:

$$t_{1}t_{2}\dots t_{2g+2} = 1,$$
  

$$t_{1}t_{3}\dots t_{2g+1} = 1,$$
  

$$t_{2}t_{4}\dots t_{2g+2} = 1.$$
  
(1.1)

The integrated anti-De Sitter connection in the surface defines a representation  $S: \pi_1(\Sigma) \to SL(2, R)$ . The n(n-1)/2 gauge invariant trace elements

$$\alpha_{ij} = \alpha_{ji} = \frac{1}{2} \operatorname{Tr}(S(t_i t_{i+1} \dots t_{j-1}))$$

generate the abstract algebra K(n), where n = 2g + 2,  $\alpha_{ii} = 1$  and  $i, j \in \mathbb{Z}_n$ , that is, endowed with an explicit cyclical symmetry of order n. The sequence  $1 \dots n$  is