p-Adic Heisenberg Group and Maslov Index ## E. I. Zelenov Steklov Mathematical Institute, Vavilov str. 42, GSP-1, 117966 Moscow, Russia Received October 29, 1991; in revised form October 22, 1992 **Abstract.** A "system of coordinates" on a set Λ of selfdual lattices in a two-dimensional p-adic symplectic space $(\mathscr{V},\mathscr{B})$ is suggested. A unitary irreducible representation of the Heisenberg group of the space $(\mathscr{V},\mathscr{B})$ depending on a lattice $\mathscr{L} \in \Lambda$ (an analogue of the Cartier representation) is constructed and its properties are investigated. By the use of such representations for three different lattices $\mathscr{L}_1,\mathscr{L}_2,\mathscr{L}_3\in\Lambda$ one defines the Maslov index $\mu=\mu(\mathscr{L}_1,\mathscr{L}_2,\mathscr{L}_3)$ of a triple of lattices. Properties of the index μ are investigated and values of μ in coordinates for different triples of lattices are calculated. ## 1. Introduction As it is known one of the profitable methods to study a quantization procedure is to construct and to investigate topological characteristics associated with this procedure. An example of such a characteristic is the Maslov index [Ma]. Let us discuss generally one way to obtain such characteristics. Let G be a group and (H_i, U_i) , i=1,2,3 be its unitary irreducible representations in the Hilbert spaces H_i , i=1,2,3 respectively. Let us assume that these representations are unitary equivalent and F_{21} , F_{32} and F_{13} be unitary intertwining operators. That is, say for F_{21} , F_{21} : $H_1 \rightarrow H_2$ and for all $g \in G$ the relation $$F_{21}^{-1}U_2(g)F_{21} = U_1(g)$$ holds (and similarly for operators F_{32} and F_{13}). By the last formula the operator $F=F_{13}F_{32}F_{21}$: $H_1\to H_1$ commutes with all operators $U_1(g),\ g\in G$. In view of irreducibility of (H_1,U_1) the operator F is proportional to the identity operator, that is $F=\mu\operatorname{Id}$ for some $\mu\in\mathbb{T}$ (\mathbb{T} denotes a unit circle in the field \mathbb{C} of complex numbers). Hence we obtain a numerical characteristic μ of a group G and a triple of its unitary irreducible representations.