Transgression and the Chern Character of Finite-Dimensional K-Cycles

Alain Connes¹ and Henri Moscovici²*

¹ I.H.E.S., 91440 Bures-sur-Yvette, France

² Department of Mathematics, The Ohio State University, Columbus, OH 43210, USA

Received June 22, 1992; in revised form August 21, 1992

Dedicated to Huzihiro Araki

Abstract. It is shown that the [JLO] entire cocycle of a finitely summable unbounded Fredholm module can be retracted to a periodic cocycle. Moreover, the retracted cocycle admits a zero-temperature limit, which provides the extension of the transgressed cocycle of [CM1] from the invertible case to the general case.

Introduction

The Chern character theory of K-cycles over an algebra A, developed as an analogue of the classical index theory of elliptic differential operators on a closed smooth manifold M, plays a fundamental role in non-commutative geometry ([C1, C2]). In this paper we are concerned with finite-dimensional K-cycles, i.e. with the K-cycles represented by unbounded finitely summable Fredholm modules over A.

Such a K-cycle (H, D) admits both a periodic Chern character, which is a class in the periodic cyclic cohomology $HC_{per}^*(A)$, and an entire Chern character, belonging to the entire cyclic cohomology $HC_{ent}^*(A)$. The periodic cyclic cohomology is much better understood than the entire cohomology, and is explicitly computed for many interesting algebras. On the other hand, the Jaffe-Lesniewski-Osterwalder cocycle [JLO], representing the entire Chern character (cf. [C3]), has some computational advantages over the periodic cocycle.

This tension can be detected already in the case when $A = C^{\infty}(M)$, with M a spin manifold, and D = the Dirac operator on M. Indeed, it is then known (cf. [C1, Part II, §6]) that $HC^{ev}_{per}(C^{\infty}(M)) \cong H_{ev}{}^{dR}(M, \mathbb{C})$, resp. $HC^{odd}_{per}(C^{\infty}(M)) \cong H_{odd}{}^{dR}(M, \mathbb{C})$, whereas the similar isomorphism for $HC^*_{ent}(C^{\infty}(M))$, expected to hold as well, was proved so far only for $M = \mathbb{S}^1$. By contrast, it is relatively easier to recover the \hat{A} -class of the manifold M from the entire JLO cocycle (cf. [BF]) than from the periodic cocycle (cf. [C1, Part I, Thm. 6.5]).

^{*} Research supported in part by NSF Grant DMS-9101557