The Quotient Construction for a Class of Compact Einstein Manifolds

Brett McInnes

Department of Mathematics, National University of Singapore, 10 Kent Ridge Crescent, 0511 Republic of Singapore

Received March 1, 1992; in revised form October 5, 1992

Abstract. Given any Einstein manifold M^E , one can obtain further examples of Einstein manifolds by taking the quotient M^E/G by a freely acting, properly discontinuous group of isometries. We study this method in the case in which M^E is Kählerian, M^E/G is compact, and the Ricci curvature is non-negative. In many cases, the candidates for G can be completely classified.

1. Introduction

The Einstein manifolds constitute perhaps the most interesting special class of Riemannian manifolds, and their properties have frequently attracted the attention of physicists: one thinks of the application of Myers' theorem by Freund and Rubin [5], of Yau's theorem by Candelas et al. [3], of hyperkähler geometry by workers in supersymmetric sigma models [8], and so on. A more complete understanding of the full range of Einstein manifolds would clearly be highly desirable both in physics and in mathematics [2].

Given any Einstein manifold M^E , one has a canonical procedure for constructing further examples of the same dimension. If a group G acts isometrically, freely, and properly discontinuously on M^E , then M^E/G is also an Einstein manifold. The distinction between M^E and M^E/G is purely global, but this global distinction can have physical consequences: in string theory, the fact that Calabi–Yau manifolds of the form M^E/G can support flat gauge fields with non-trivial holonomy is the basis of the "Hosotani mechanism" for breaking gauge symmetries.

The "quotient Calabi-Yau" manifolds of string theory are special examples of an interesting class of manifolds which we may call the "locally Kählerian" Einstein manifolds. These are Einstein manifolds of the form M^E/G , where M^E is a simply connected, irreducible Kähler-Einstein manifold, and where G acts isometrically but not necessarily holomorphically (so that the *restricted* holonomy group of M^E/G is contained in U(n), where n is the complex dimension of M^E). In this work we present some results on this important class of Einstein manifolds, mainly confining ourselves to the case in which M^E/G is compact and of non-negative Ricci