

Crystal Base and a Generalization of the Littlewood-Richardson Rule for the Classical Lie Algebras

Toshiki Nakashima

Department of Mathematical Science, Faculty of Engineering Science, Osaka University, Toyonaka Osaka 560, Japan

Abstract. We shall give a generalization of the Littlewood-Richardson rule for $U_q(g)$ associated with the classical Lie algebras by use of crystal base. This rule describes explicitly the decomposition of tensor products of given representations.

Table of Contents

0.	Introduction			•			. 2	215
1.	Basic Notions of Crystal Base						. 2	217
2.	Review of Crystal Graphs						. 2	218
3.	Generalized Young Diagrams						. 2	226
4.	Decomposition of $V_{\rm Y} \otimes V_{\Box}$. 2	228
5.	Decomposition of $V_{\rm Y} \otimes V_{\rm sp}$				•		. 2	233
	Decomposition of $V_{\mathbf{Y}} \otimes V_{\mathbf{W}}$							
Aŗ	opendix. Relation to the Original Littlewood-Richardson Rule		• ,			•	. 2	241

0. Introduction

In representation theory, it is one of the most fundamental problems to decompose a given representation into the irreducible components. For the Lie algebra gl(n), we know a very famous rule called the Littlewood-Richardson rule, which gives the irreducible decomposition of the tensor product of two finite-dimensional irreducible representations. There are various generalizations of this rule to other Lie algebras (e.g. cf. [B-Z, L, T]). The purpose of this paper is to give an explicit description of irreducible decomposition of tensor products of finite-dimensional representations of the q-analogue of universal enveloping algebra associated with the classical Lie algebras by a new tool "crystal base."

The notion of the q-analogue of universal enveloping algebras was introduced by V.G. Drinfeld ([D]) and M. Jimbo ([J]) in 1985 independently. In 1990, the theory of crystal base was constructed by M. Kashiwara ([K1, K2]). Roughly