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Abstract. We consider the class of quasi-periodic self-adjoint operators H{x) =
D(x) + V(x), x e Sι = Rι/Z\ on a multi-dimensional lattice Zu, with the matrix
elements

Ann 0*0 = δmnD(X + nω) » Knn 0*0 = V(m ~ n> X

where D(x + 1) = D(x), V(n,x + 1) = V(n,x), ω G W, and \V(n,x)\ < εe~ rH,
r > 0. We prove that, if ε is small enough, V(n, •) and D( ) satisfy some conditions
of smoothness, and D{ ) is non-degenerate, then for a.e. ω and for a.e. x £ Sι the
operator H(x) has pure point spectrum. All its eigenfunctions belong to lι(Έu).

1. Introduction

In the spectral theory of almost periodic media, two important classes of quantum
Hamiltonians have been investigated particularly well: nearest-neighbor Hamiltonians
like the "almost-Mathieu" operator on Z 1,

(Hε(x)φ) (n) = ε(φ(n - 1) + ψ(n + 1)) + cos(x + nω)ψ(ri),

which describes a quasi-periodic medium with infinite number of resonances (Sinai
[1], Frohlich, Spencer, and Wittwer [2]), and long-range Hamiltonians like

(Hε(x)ψ) (n) = ε Ύ^ α ( n ~ ^i)^(^i) + tan(x + nω)ψ(n),

with |α(n)| < e~ r 'n ' , r > 0, which describe media with no resonances (see Bellissard,
Lima, and Scoppola [3]). The main purpose of the present paper is to extend the
perturbation-theoretic analysis of resonances, originally proposed by Sinai [1] and
going back to the KAM (Kolmogorov-Arnold-Moser) theory. Many authors mentioned
that the methods of the KAM theory appear naturally in localization problems (see
in particular [4]). We refer also to a related work by Bellissard [6].


