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Abstract. A uniqueness condition for Gibbs measures is given. This condition is

stated in terms of (absence of) a certain type of percolation involving two independent

realisations. This result can be applied in certain concrete situations by comparison

with "ordinary" percolation. In this way we prove that the Ising antiferromagnet on a

square lattice has a unique Gibbs measure if β(4 - \h\) < | ln(Pc/(l — Pc)), where

h denotes the external magnetic field, β the inverse temperature, and Pc the critical

probability for site percolation on that lattice. Since Pc is larger than | , this extends

a result by Dobrushin, Kolafa and Shlosman (whose proof was computer-assisted).

1. Introduction and General Theorem

Our main theorem requires hardly any prerequisites and we hope the following
introduction makes it also accessible to non-experts.

Let the graph G be connected, countably infinite, and locally finite (the last means
that each vertex has finitely many edges). The set of vertices of G is denoted by VG.
Vertices will typically be denoted by i,j,υ,w etc., possibly with a subscript. Two
vertices v and w are said to be adjacent, or neighbours (notation: v ~ w) if there is
an edge between them.

A path from v to w is a sequence of vertices υx = v,v2, . . . , υι = w with
the property that consecutive vertices are adjacent. An infinite path is a sequence
vx,v2, . . . with the property that consecutive vertices are adjacent, and which contains
infinitely many different vertices.

For B C VG, δB will denote the boundary of B, i.e. the set of all vertices which
are not in B but adjacent to some vertex in B.
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