Boundedness for Large |x| of Suitable Weak Solutions of the Navier-Stokes Equations with Prescribed Velocity at Infinity

Hans-Christoph Grunau

Mathematisches Institut, Universität Bayreuth, Postfach 101251, W-8580 Bayreuth, Fed. Rep. Germany

Received April 8, 1992; in revised form September 18, 1992

Abstract. We consider time-dependent perturbations u of R. Finn's stationary PRsolution of the Navier-Stokes equations, which converges to a constant vector v_{∞} as $|x| \to \infty$. For a given time interval $[\delta, T]$, we find a radius K such that u is essentially bounded on $[\delta, T] \times \{|x| \ge K\}$.

1. Introduction

We want to investigate the boundedness for large |x| of weak solutions v of the Navier-Stokes system

$$\begin{split} v_t - \Delta v + (v \cdot \nabla) v + \nabla p &= f ,\\ \operatorname{div} v &= 0 \quad \text{in} \quad [0, T] \times \Omega ,\\ v(0, x) &= v_0(x) \quad \text{for} \quad x \in \Omega ,\\ v(t, x) &= 0 \quad \text{for} \quad (t, x) \in [0, T] \times \partial \Omega ,\\ v(t, x) &\to v_\infty \quad \text{as} \quad |x| \to \infty , \quad t \in [0, T] , \end{split}$$

where Ω is a smooth exterior domain in \mathbf{R}^3 , div f = 0, div $v_0 = 0$, $v_0 | \partial \Omega = 0$, $v_0 \rightarrow v_\infty$ at infinity, $v_\infty \in \mathbf{R}^3$ is the prescribed constant velocity at infinity.

Most of the previous work concentrates on the case $v_{\infty} = 0$, where suitable weak solutions of (1) are known to become small in some average sense and bounded for large $|x| \cdot t$, if $f \to 0$ $(t, |x| \to \infty)$, see [CKN, MP, SW]. This means that singularities may occur only in a compact subset of $[0, \infty) \times \Omega$. Some important results are also surveyed in [W].

If $v_{\infty} \neq 0$ it is not apparent, whether a global weak solution to (1) will converge to a stationary solution as $t \to \infty$. This seems to happen in general only under some smallness assumptions on a corresponding stationary solution, see Miyakawa and Sohr [MS] and Masuda [MK].

In this note we will only assume the existence of a "reasonable" stationary solution $\stackrel{(0)}{v}$, we will not require any additional smallness. For the existence of $\stackrel{(0)}{v}$ we refer to