Commun. Math. Phys. 148, 487-502 (1992)

The Index of the Scattering Operator on the Positive Spectral Subspace

Ulrich Bunke¹ and Tankred Hirschmann²

 Max-Planck-Institut f
ür Mathematik, Gottfried-Claren-Straße 26, W-5300 Bonn 3, FRG
 Akademie der Wissenschaften, Karl-Weierstraß-Institut f
ür Mathematik, Mohrenstraße 39, 1086 Berlin, FRG

Received July 13, 1991; in revised form February 21, 1992

Abstract. We construct the scattering operator for a spinor field in a time dependent background by the Dyson expansion. Then we show that the restriction of the scattering operator to the positive spectral subspace (with respect to a reference Hamiltonian) is Fredholm. The computation of the index of this restriction is reduced to the index computation for an elliptic pseudodifferential operator of order zero. We obtain the index in terms of a cohomological formula by means of the Atiyah-Singer index theorem.

Table of Contents

1.	Introduction								487
2.	Geometrical Setting								490
	2.1. The Spin Bundle.								
	2.2. Twisted Dirac Operators								
3.	Construction of the Scattering Operators								
	3.1. The Propagator								491
	3.2. Asymptotic Constants								492
	3.3. Dyson Expansion of the Propagator								492
4.	An Index Theorem for the Scattering Operators								494
	4.1. An Index Lemma								494
	4.2. The Positive Spectral Projection								495
	4.3. The Index of the Scattering Operators								

1. Introduction

The scattering operator Ω_{-} describes how the time evolution of a field governed by a time dependent Hamiltonian H(t) behaves in comparison with an evolution given by a constant reference Hamiltonian H_0 . The operator Ω_{-} maps the space of incoming states with respect to H_0 to the incoming states of H(t). $\Omega_{-}\phi =: \psi$ is