Erratum

Semi-Infinite Weil Complex and the Virasoro Algebra

Boris Feigin¹ and Edward Frenkel²

¹ Landau Institute for Theoretical Physics, Moscow, Russia

² Department of Mathematics, Harvard University, Cambridge, MA 02138, USA

Received February 21, 1992

Commun. Math. Phys. 137, 617-639 (1991)

In Sect. 4, on p. 636, we had assumed an incorrect structure of the Fock representations \mathscr{H}_p of the Virasoro algebra, taken from [1], Theorem 1.10 (cf. Fig. 5). In fact, the module \mathscr{H}_p is isomorphic to the Verma module, if $p \le 0$, and to the contragradient Verma module, if p > 0, with highest weight $h'_p = -(p-2)(p+1)/2$ and central charge 28 [2].

For this reason the exact sequences (24), (25), and Proposition 7 on p. 637 are also incorrect. Proposition 7 should read as follows.

Proposition 7. 1) Let $m \ge 0$, $n \le 0$ be of equal parity. Then $h^j(L_m \otimes \mathcal{H}_n) = \delta_{j,0}$, if m = -n and 0, otherwise.

2) Let $m \ge 0$, $n \le 0$ be of different parity. Then $h^j(L_m \otimes \mathscr{H}_n) = \delta_{j,1}$, if m = -n-1 and 0, otherwise.

3) Let $m \ge 0$ and 0 < n < m. Then $h^j(L_m \otimes \mathscr{H}_n) = 0$ for any j.

Proof of parts 1) and 2) follows from the isomorphism $\mathcal{H}_n \simeq M_{(h'_n, 28)}$ for $n \leq 0$, Proposition 5, and the short exact sequence

$$0 \to L_{\chi} \to M_{\chi}^* \to M_{\chi 1}^* \to 0.$$

Part 3) can be proved in a similar fashion. \Box

This corrects (and simplifies) the statement of Theorem 1 on p. 628.

Theorem 1. 1) Let p = -2m, $m \ge 0$. Then $h_p^{0,l} = 1$, if $l \le m$, and $h_p^{j,l} = 0$, otherwise. 2) Let p = -2m - 1, $m \ge 0$. Then $h_p^{1,l} = 1$, if $l \le m$ and $h_p^{j,l} = 0$, otherwise. 3) Let p = -2m + 1, $m \le 0$, Then $h_p^{0,l} = 1$, if $l \ge m$, and $h_p^{j,l} = 0$, otherwise. 4) Let p = -2m + 2, $m \le 0$. Then $h_p^{-1,l} = 1$, if $l \ge m$ and $h_p^{j,l} = 0$, otherwise.

Proof. Let p = -2m, $m \ge 0$. By Theorem 4, $h_p^{j,l} = \sum_{k \ge 0} h^j (L_{|l|+2k} \otimes \mathscr{H}_{p+l})$. It is equal to $\delta_{j,0}$, if $l \le m$, and 0, if l > m, by Proposition 7.

In other cases the proof is similar. \Box