Commun. Math. Phys. 147, 605-624 (1992)

Non-Commutative Spheres

III. Irrational Rotations

Ola Bratteli^{1, *} and Akitaka Kishimoto²

¹ Institute of Mathematics, University of Trondheim, N-7034 Trondheim – NTH, Norway

² Department of Mathematics, Hokkaido University, Sapporo, 060 Japan

Received October 3, 1991; in revised form December 11, 1991

Dedicated to Professor Huzihiro Araki on the occasion of his 60'th birthday

Abstract. Let A_{θ} be the irrational rotation algebra, i.e. the C*-algebra generated by two unitaries U, V satisfying $VU = e^{2\pi i \theta} UV$, with θ irrational, and consider the fixed point subalgebra B_{θ} under the flip automorphism $U \rightarrow U^{-1}$, $V \rightarrow V^{-1}$. We prove that B_{θ} is an AF-algebra.

Table of Contents

1. Introduction						•										605
2. Putnam's Tower	Construction	on c	n '	Г			•									607
3. A Subsidiary To-	wer Constru	actic	on													609
4. Kumjian's Project	ctions															611
5. Finite-Dimensior	al Subalgei	bras														613
6. Homogeneous Su	ıbalgebras.															614
7. Basic Building B	locks															620
8. Small Eigenvalue	Variation										•	•				623
References					•					•		•				624

1. Introduction

In this paper we continue the study, begun in [BEEK 1] and [BEEK 2], of the fixed point subalgebra of the rotation algebra under the flip. Recall from [Rie] that the rotation algebra A_{θ} is the universal C*-algebra generated by two unitaries U, V satisfying $VU = \varrho UV$, where $\varrho = e^{2\pi i\theta}$ and $0 \le \theta < 1$. The flip σ is the automorphism of this algebra defined through the requirements

$$\sigma(U) = U^{-1}, \quad \sigma(V) = V^{-1}. \tag{1.1}$$

^{*} Present address: Department of Mathematics, University of Oslo, P.O. Box 1053, N-0316 Oslo 3, Norway