Commun. Math. Phys. 147, 191-197 (1992)

The Semiclassical Limit for Gauge Theory on S^{2*}

Ambar Sengupta

Department of Physics, Princeton University, Princeton, NJ 08544-0708, USA

Received July 1, 1991

Abstract. It is shown that the Yang-Mills measure $Z_h^{-1}e^{-S(\omega)/h}[D\omega]$, where h > 0, describing gauge fields on the two-sphere converges to a probability measure on the moduli space of Yang-Mills connections on S^2 , as $h \rightarrow 0$.

1. Introduction

In this paper we prove that the quantum Yang-Mills measure $d\mu_{YM}^T(\omega) = \frac{1}{Z_T} e^{-S(\omega)/T} [D\omega]$ (notation to be explained in Sect. 2) for gauge fields over the two-sphere S^2 converges, as $T \rightarrow 0$, to a probability measure μ_{YM}^T on the set of minima of the Yang-Mills action functional S. The measure μ_{YM}^T has been constructed and studied in [Se 1, 2] (and, from a different point of view, by Fine in [F]) for a wide class of gauge groups. On the other hand, the minima of the Yang-Mills action S for gauge fields over S^2 are also well-understood [AB, G, FH, Se 1, NU]. In Sect. 2 we summarize the relevant results that are known and in Sect. 3 we describe the limiting process.

2. Classical and Quantum Yang-Mills on S^2

Let G be a compact connected Lie group with a fixed bi-invariant metric $\langle \cdot, \cdot \rangle_g$ on its Lie algebra g.

Equip S^2 with a Riemannian metric. If E is a Borel subset of S^2 we denote by |E| its area as given by the area-measure $d\sigma$ induced by the metric. For the geometric discussions we will visualize S^2 as the usual sphere sitting in R^3 and we will equip it with a north pole n, a south pole s, and the hemispheres N and S which intersect in the equator \mathscr{E} . We will often refer to the meridians – these are the usual meridians

^{*} This work was partially supported by NSF Grants DMS-8922941, and PHY-8912067