Commun. Math. Phys. 147, 25-56 (1992)

A Matrix Integral Solution to two-dimensional W_p -Gravity

M. Adler¹ and P. van Moerbeke^{1,2}

¹ Department of Mathematics, Brandeis University, Waltham, Mass 02254, USA

² Department of Mathematics, University of Louvain, B-1348-Louvain-la-Neuve, Belgium

Received October 22, 1991; in revised form January 17, 1992

Abstract. The p^{th} Gel'fand-Dickey equation and the string equation [L, P] = 1 have a common solution τ expressible in terms of an integral over $n \times n$ Hermitean matrices (for large n), the integrand being a perturbation of a Gaussian, generalizing Kontsevich's integral beyond the KdV-case; it is equivalent to showing that τ is a vacuum vector for a \mathscr{W}_p^+ -algebra, generated from the coefficients of the vertex operator. This connection is established via a quadratic identity involving the wave function and the vertex operator, which is a disguised differential version of the Fay identity. The latter is also the key to the spectral theory for the two compatible symplectic structures of KdV in terms of the stress-energy tensor associated with the Virasoro algebra.

Given a differential operator

 $L = D^{p} + q_{2}(t) D^{p-2} + \dots + q_{p}(t), \text{ with } D = \frac{\partial}{\partial x}, t = (t_{1}, t_{2}, t_{3}, \dots), x \equiv t_{1},$ consider the deformation equations¹

$$\frac{\partial L}{\partial t_n} = [(L^{n/p})_+, L] \qquad n = 1, 2, \dots, n \neq 0 \pmod{p}$$
(0.1)
(*p*-reduced KP-equation)

of L, for which there exists a differential operator P (possibly of infinite order) such that

[L, P] = 1 (string equation). (0.2)

In this note, we give a complete solution to this problem. In section 1 we give a brief survey of useful facts about the *I*-function $\tau(t)$, the wave function $\Psi(t, z)$, solution of $\partial \Psi / \partial t_n = (L^{n/p})_x \Psi$ and $L^{1/p} \Psi = z \Psi$, and the corresponding infinite-dimensional plane V^0 of formal power series in z (for large z)

 $V^0 = \operatorname{span} \{ \Psi(t, z) \text{ for all } t \in \mathbb{C}^{\infty} \}$

$${}^{1}\left(\sum_{-\infty}^{\infty}b_{i}D_{i}\right)_{+}=\sum_{0}^{\infty}b_{i}D_{i},\,(\sum b_{i}D^{i})_{-}=\sum_{-\infty}^{-1}b_{i}D_{i},\,(\sum b_{i}D^{i})_{j}=b_{j}.$$