© Springer-Verlag 1992

Lyapunov Exponents of the Schrödinger Equation with Quasi-Periodic Potential on a Strip

I. Ya. Goldsheid 1, * and E. Sorets 2

¹ Fakultät für Mathematik, Ruhr-Universität-Bochum (FRG), SFB-237 Bochum-Essen-Düsseldorf, FRG

Received June 10, 1991; in revised form September 25, 1991

Abstract. We prove that all the non-negative Lyapunov exponents of difference Schrödinger equation

$$-y_{n+1} + Q_n y_n - y_{n-1} = 0, \quad -\infty < n < +\infty$$

are strictly positive. Here $y_n \in R^m$ and Q_n is a symmetric $m \times m$ matrix whose off-diagonal elements do not depend on n, and the diagonal elements are quasi-periodic functions

$$q_{nj}(\theta) = \lambda f_j(e^{2\pi i(\theta + n\alpha)}) - E$$

with all f_i non-constant analytic functions, λ sufficiently large, and α any irrational number.

1. Introduction and Formulation of Results

In this paper we shall study the Lyapunov exponents of the difference equation:

$$-v_{n+1} + O_n v_n - v_{n-1} = 0, \quad -\infty < n < +\infty,$$
 (1)

where $y_n \in \mathbb{R}^m$ and Q_n is a symmetric $m \times m$ matrix whose off-diagonal elements do not depend on n, and the diagonal elements are quasi-periodic functions

$$q_{n,i}(\theta) = \lambda f_i(e^{2\pi i(\theta + n\alpha)}) - E$$

with $f_j(z)$ non-constant analytic on $\mathscr{A} = \{z \mid r < |z| < 1/r\}$, taking values in [-1,1] for |z| = 1, λ is a (large) parameter called coupling constant, E is the energy, and α is any irrational number. Without loss of generality we shall assume that $\max_{1 \le i \le m} \sup_{|z| = 1} f_i(z) = 1$ and $\min_{1 \le i \le m} \inf_{|z| = 1} f_i(z) = -1$.

² Institute for Advanced Study, Olden Lane, Princeton, NJ 08540, USA

^{*} On leave from Math. Institute, Academy of Sciences USSR, 450057 Ufa, USSR