Commun. Math. Phys. 144, 557-580 (1992)

Communications in Mathematical Physics © Springer-Verlag 1992

Finite Dimensional Representations of the Quantum Lorentz Group

Mitsuhiro Takeuchi

Institute of Mathematics, University of Tsukuba, Tsukuba, Ibaraki 305, Japan

Received March 28, 1991

Abstract. All finite dimensional irreducible representations of the quantum Lorentz group $SL_q(2, \mathbb{C})$ are described explicitly and it is proved all finite dimensional representations of $SL_q(2, \mathbb{C})$ are completely reducible. The conjecture of Podleś and Woronowicz will be answered affirmatively.

0. Introduction

The quantum Lorentz group $SL_q(2, \mathbb{C})$, where q is a real parameter $\neq 0, \pm 1$, was introduced by Podleś and Woronowicz [PW], and the Iwasawa decomposition and representation theory were studied. This quantum group is combined with the double group of $SU_q(2)$, a q-analogue of the compact group SU(2) [W, MMNNU], through the Iwasawa decomposition. Let A_q (respectively B_q) be the *-Hopf algebra corresponding to the quantum group $SL_q(2, \mathbb{C})$ (respectively $SU_q(2)$). (A *-Hopf algebra means a Hopf algebra over \mathbb{C} with a *-operation satisfying some properties. See Sect. 4.) The dual vector space $B'_q = \text{Hom}_{\mathbb{C}}(B_q, \mathbb{C})$ has a topological Hopf algebra structure. By a topological Hopf algebra, we mean a topological analogue of the usual Hopf algebra, in which the underlying vector space is assumed to have a linear topology and the complete tensor product $\hat{\otimes}$ plays the role of the usual tensor product. (See Sect. 1.)

Podleś and Woronowicz have introduced some topological Hopf algebra structure as well as some *-operation on $B_q \otimes B'_q$ and have proved there is an injective *-Hopf algebra map of A_q into $B_q \otimes B'_q$. We call

$$\mathscr{E}_q = B_q \widehat{\otimes} B'_q$$

the quantum double of B_q . This is the dual version of Drinfeld's quantum double [D], and corresponds to the double group of $SU_q(2)$.

The topological Hopf algebra \mathscr{E}_q has the largest (non-topological) Hopf subalgebra E_q , and what they have done is the construction of an injective *-Hopf algebra map of A_q into E_q . This is not surjective. There is a central group-like