Spectral Properties of a Class of Operators Associated with Conformal Maps in Two Dimensions

Communications in Mathematical Physics © Springer-Verlag 1992

David Ruelle

I.H.E.S., 35, Route de Chartres, F-91440 Bures-Sur-Yvette, France

Received March 12, 1991; in revised form July 25, 1991

Abstract. If f is a rational map of the Riemann sphere, define the transfer operator \mathscr{L} by

$$\mathscr{L}\Phi(z) = \sum_{Z: fZ=z} g(Z)\Phi(Z).$$

Let also \mathscr{B} be the Banach space of functions for which the second derivatives are measures. If $g \in \mathscr{B}$ and g satisfies a simple integrability condition (implying that g vanishes at critical points and multiple poles of f) then \mathscr{L} is a bounded linear operator on \mathscr{B} . The essential spectral radius of \mathscr{L} can be estimated and, under suitable conditions, proved to be strictly less than the spectral radius. Similar estimates for more general operators \mathscr{L} are also obtained.

1. Assumptions and Generalities

Let X be a bounded open subset of \mathbb{C} . If the second derivatives in the sense of distributions of $\varphi: \mathbb{C} \mapsto \mathbb{C}$ are bounded measures, we write (using a "functional" notation for measures):

$$\operatorname{Var} \varphi = \int_{\mathbb{C}} dx \, dy \, |\partial^2 \varphi|,$$

where $|\partial^2 \varphi|$ denotes the norm of the 2×2 matrix of second derivatives (i.e. the norm bilinear of forms on \mathbb{C}^2 , where \mathbb{C}^2 has the usual Hilbert norm). In particular

$$\operatorname{Var} \varphi \geq \frac{1}{4} \int_{\mathbb{C}} dx dy \left[\left| \frac{\partial^2 \varphi}{\partial x^2} \right| + 2 \left| \frac{\partial^2 \varphi}{\partial x \partial y} \right| + \left| \frac{\partial^2 \varphi}{\partial y^2} \right| \right].$$

We define

$$\mathscr{B} = \{ \varphi : \operatorname{Var} \varphi < \infty \text{ and } \varphi \text{ vanishes on } \mathbb{C} \setminus X \}.$$

Then \mathscr{B} is a Banach space with respect to the norm Var (which has properties similar to the total variation for functions on \mathbb{R} , particularly that it behaves well