Commun. Math. Phys. 143, 431-449 (1992)



## **Dual Polygonal Billiards and Necklace Dynamics**

## Eugene Gutkin\* and Nandor Simanyi\*\*

Department of Mathematics, University of Southern California, Los Angeles, CA 90089, USA

Received June 15, 1990

**Abstract.** We study the orbits of the dual billiard map about a polygonal table using the technique of necklace dynamics. Our main result is that for a certain class of tables, called the quasi-rational polygons, the dual billiard orbits are bounded. This implies that for the subset of rational tables (i.e. polygons with rational vertices) the dual billiard orbits are periodic.

## 1. Introduction

Let P be a closed bounded domain in  $\mathbb{R}^2$  with a  $C^1$  boundary and set  $E = \mathbb{R}^2 \setminus P$ . If P is strictly convex, the *dual billiard*  $T: E \to E$  is defined as follows. For any point  $o \in E$  there are two rays R and R' emanating from o and tangent to P, where the observer looking at P from o sees R on the left and R' on the right of P. Let A and A' be the points of tangency. For any point  $v \in \mathbb{R}^2$  denote by  $r_v$  the Euclidean reflection about v. Then  $T(o) = r_A(o)$ . The mapping T is continuous, preserves the Lebesgue measure and invertible with  $T^{-1}(o) = r_A(o)$ .

If P is not strictly convex (for instance, P is a convex polygon) the dual billiard mapping T is defined the same way but not on all of E (Fig. 1). Denote by  $\sigma_1$  the union of straight lines through the sides of P. Then both T and  $T^{-1}$  are defined on  $E \setminus \sigma_1$  and  $\sigma_1 \cap E$  is the union of singular sets of T and  $T^{-1}$ . By induction on  $n \ge 1$  we define  $\sigma_n$ , a finite union of straight lines, where  $T^k$ ,  $-n \le k \le n$ , are well defined on  $E \setminus \sigma_n$ . The singular set  $\Sigma = \bigcup_{n=1}^{\infty} \sigma_n$  is a countable union of straight lines, and for  $x \in E \setminus \Sigma$  (regular points) the infinite orbits  $\{T^n x : -\infty < n < \infty\}$  are defined. The theme of this work is the **orbit behavior for dual polygonal billiards**. In particular, can they be unbounded? If P is not a polygon but is bounded by a  $C^7$ -curve of positive curvature, all of the orbits are bounded [M1, D]. The proof is based on the

<sup>\*</sup> Partially supported by NSF Grant DMS 88-02643

<sup>\*\*</sup> Permanent address: Mathematical Institute of the Hungarian Academy of Sciences, P.O. Box 127, H-1364 Budapest, Hungary