Commun. Math. Phys. 142, 139–168 (1991)

Adiabatic Limits of the η -Invariants The Odd-Dimensional Atiyah-Patodi-Singer Problem

Ronald G. Douglas¹ and Krzysztof P. Wojciechowski²

¹ Department of Mathematics, SUNY at Stony Brook, Stony Brook, NY 11794, USA

² Department of Mathematics, IUPUI, Indianapolis, IN 46205, USA

Received March 7, 1990; in revised form June 14, 1991

Abstract. We study the η -invariant of boundary value problems of Atiyah-Patodi-Singer type. We prove the formula for the spectral flow of the families over S^1 . Assuming a product structure in a collar neighbourhood of the boundary, we show that the η -invariant behaves the same way as on a closed manifold. We also study the "adiabatic" limit of the η -invariant. In fact, we present a general method for the calculation of the "adiabatic" limits of the spectral invariants. In nice cases we are able to split them into a contribution from the interior, one from the cylinder, and an error term. Then we show that the error term disappears with the increasing length of the cylinder.

0. Introduction

Let $A: C^{\infty}(X; V) \to C^{\infty}(X; V)$ denote a generalized Dirac operator on an odddimensional manifold X with boundary Y, and $g: X \to U(N)$ denote a unitary gauge transformation equal to the identity on a certain neighbourhood of Y. We define the operators $D_0 = A \otimes \operatorname{Id}_{\mathbb{C}^N}$ and $D_1 = (\operatorname{Id}_V \otimes g) D_0(\operatorname{Id}_V \otimes g)^{-1}$ and the family $\{D_r = rD_1 + (1-r)D_0\}$. We fix a self-adjoint boundary condition P for all D_r and as a result we obtain a self-adjoint Fredholm operator $(D_r)_P$. In fact, reduced modulo unitary equivalence $\{(D_r)_P\}_{r\in[0,1]}$ provides us with a family of self-adjoint Fredholm operators over the circle S^1 .

The spectral flow is the only homotopy invariant of such families. It is the difference between the number of eigenvalues which change sign from - to + when r goes from 0 to 1 and the number of eigenvalues which change sign from + to -. We want to compute this invariant. In the case of a closed manifold we use η -invariant. Let $\{B_r\}$ denote a family of self-adjoint elliptic operators of positive order on a closed manifold. The topological formula for the spectral flow is the result of the following equality:

sf {B_r} =
$$\int_{0}^{1} d/dr(\eta_{B_r}(0))dr$$
, (0.1)