On Rational Solutions of Yang-Baxter Equations. Maximal Orders in Loop Algebra

A. Stolin
Department of Mathematics, Stockholm University, Box 6701, S-11385 Stockholm, Sweden

Received February 6, 1991

Abstract

In 1982 Belavin and Drinfeld listed all elliptic and trigonometric solutions $X(u, v)$ of the classical Yang-Baxter equation (CYBE), where X takes values in a simple complex Lie algebra \mathfrak{g}, and left the classification problem of the rational one open. In 1984 Drinfeld conjectured that if a rational solution is equivalent to a solution of the form $X(u, v)=C_{2} /(u-v)+r(u, v)$, where C_{2} is the quadratic Casimir element and r is a polynomial in u, v, then $\operatorname{deg}_{u} r=\operatorname{deg}_{v} r \leqq 1$. In another paper I proved this conjecture for $\mathfrak{g}=\mathfrak{s l}(n)$ and reduced the problem of listing "nontrivial" (i.e. nonequivalent to $C_{2} /(u-v)$) solutions of CYBE to classification of quasi-Frobenius subalgebras of \mathfrak{g}. They, in turn, are related with the so-called maximal orders in the loop algebra of g corresponding to the vertices of the extended Dynkin diagram $D^{e}(\mathfrak{g})$. In this paper I give an algorithm which enables one to list all solutions and illustrate it with solutions corresponding to vertices of $D^{e}(\mathfrak{g})$ with coefficient 2 or 3 . In particular I will find all solutions for $\mathfrak{g}=\mathfrak{o}(5)$ and some solutions for $\mathfrak{g}=\mathfrak{o}(7), \mathfrak{p}(10), \mathfrak{o}(14)$ and \mathfrak{g}_{2}.

Introduction

This paper is a continuation of refs. [11-15]. I will recall, however, some of the notations and the main idea. In this paper I will explain how rational solutions of the classical Yang-Baxter equation (CYBE) for a simple complex Lie algebra \mathfrak{g} correspond to the extended Dynkin diagram $D^{e}(\mathfrak{g})$. An announcement of the results of this paper had been delivered at the International Algebraic Conference in Novosibirsk, 1989 [13, 14].
0.1. Formulation of the Problem. We will consider functions $X: \mathbb{C}^{2} \rightarrow \mathfrak{g} \otimes \mathfrak{g}$ such that

$$
\begin{gathered}
{\left[X^{12}\left(u_{1}, u_{2}\right), X^{13}\left(u_{1}, u_{3}\right)\right]+\left[X^{12}\left(u_{1}, u_{2}\right), X^{23}\left(u_{2}, u_{3}\right)\right]+\left[X^{13}\left(u_{1}, u_{3}\right), X^{23}\left(u_{2}, u_{3}\right)\right]=0,} \\
X^{12}(u, v)=-X^{21}(v, u), \quad(\mathrm{CYBE})
\end{gathered}
$$

and a solution will be called rational if it is of the form $X=C_{2} /(u-v)+r(u, v)$, where $r(u, v) \in \mathfrak{g}[u] \otimes \mathfrak{g}[v]$, cf. refs. $[2,3]$.

