Commun. Math. Phys. 141, 533–548 (1991)

On Rational Solutions of Yang–Baxter Equations. Maximal Orders in Loop Algebra

A. Stolin

Department of Mathematics, Stockholm University, Box 6701, S-11385 Stockholm, Sweden

Received February 6, 1991

Abstract. In 1982 Belavin and Drinfeld listed all elliptic and trigonometric solutions X(u, v) of the classical Yang-Baxter equation (CYBE), where X takes values in a simple complex Lie algebra g, and left the classification problem of the rational one open. In 1984 Drinfeld conjectured that if a rational solution is equivalent to a solution of the form $X(u, v) = C_2/(u-v) + r(u, v)$, where C_2 is the quadratic Casimir element and r is a polynomial in u, v, then $\deg_u r = \deg_v r \leq 1$. In another paper I proved this conjecture for $g = \mathfrak{sl}(n)$ and reduced the problem of listing "nontrivial" (i.e. nonequivalent to $C_2/(u-v)$) solutions of CYBE to classification of quasi-Frobenius subalgebras of g. They, in turn, are related with the so-called maximal orders in the loop algebra of g corresponding to the vertices of the extended Dynkin diagram $D^e(g)$. In this paper I give an algorithm which enables one to list all solutions and illustrate it with solutions corresponding to vertices of $D^e(g)$ with coefficient 2 or 3. In particular I will find all solutions for $g = \mathfrak{o}(5)$ and some solutions for $g = \mathfrak{o}(7)$, $\mathfrak{o}(10)$, $\mathfrak{o}(14)$ and g_2 .

Introduction

This paper is a continuation of refs. [11-15]. I will recall, however, some of the notations and the main idea. In this paper I will explain how rational solutions of the classical Yang-Baxter equation (CYBE) for a simple complex Lie algebra g correspond to the extended Dynkin diagram $D^e(g)$. An announcement of the results of this paper had been delivered at the International Algebraic Conference in Novosibirsk, 1989 [13, 14].

0.1. Formulation of the Problem. We will consider functions
$$X: \mathbb{C}^2 \to g \otimes g$$
 such that
 $[X^{12}(u_1, u_2), X^{13}(u_1, u_3)] + [X^{12}(u_1, u_2), X^{23}(u_2, u_3)] + [X^{13}(u_1, u_3), X^{23}(u_2, u_3)] = 0,$
 $X^{12}(u, v) = -X^{21}(v, u), \quad (CYBE)$

and a solution will be called *rational* if it is of the form $X = C_2/(u-v) + r(u,v)$, where $r(u,v) \in g[u] \otimes g[v]$, cf. refs. [2, 3].