Generalized Chiral Potts Models and Minimal Cyclic Representations of $U_q(\widehat{\mathfrak{gl}}(n, \mathbb{C}))$

Etsuro Date¹, Michio Jimbo², Kei Miki,³* and Tetsuji Miwa⁴

- ¹ Department of Mathematical Science, Faculty of Engineering Science, Osaka University, Toyonaka, Osaka 560, Japan
- ² Department of Mathematics, Faculty of Science, Kyoto University, Kyoto 606, Japan
- ³ Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606, Japan
- ⁴ Research Institute for Mathematical Sciences, Kyoto University, Kyoto 606, Japan

Received September 11, 1990; in revised form October 15, 1990

Abstract. We present for odd N a construction of the N^{n-1} -state generalization of the chiral Potts model proposed recently by Bazhanov et al. The Yang-Baxter equation is proved.

1. Introduction

The discovery of the chiral Potts model [1-4] opened a new phase in the theory of Yang-Baxter equations (YBE). It gave the first example of an R matrix (= solution to YBE) whose spectral parameters live on an algebraic variety other than \mathbf{P}^1 or an elliptic curve. Through the latest developments [5-8] it has become apparent that quantum groups at roots of 1 should lead to this type of R matrices. Because of the technical complexity, this program has been worked out so far only in a few simple examples. Besides the chiral Potts model, which is related to $U_q(\widehat{\mathfrak{sl}}(3,\mathbf{C}))$, these are the cases corresponding to $U_q(\widehat{\mathfrak{sl}}(3,\mathbf{C}))$ ([7] for $q^3=1$, [9] for $q^4=1$) or $U_q(A_2^{(2)})$ [8]. In a recent paper [10] Bazhanov et al. proposed a generalization of the chiral Potts model related to N^{n-1} dimensional irreducible representations of $U_q(\widehat{\mathfrak{sl}}(n,\mathbf{C}))$ at $q^N=1$. The aim of this paper is to give a proof to their conjecture.

Let us formulate the problem more precisely. Throughout the paper we fix a primitive N^{th} root of unity q, with N an odd integer ≥ 3 . We shall deal with a Hopf algebra \widetilde{U}_q (essentially the quantum double of a "Borel" subalgebra of $U_q(\widehat{\mathfrak{gl}}(n, \mathbb{C}))$ [8]. As an algebra \widetilde{U}_q is a trivial extension of $U_q(\widehat{\mathfrak{gl}}(n, \mathbb{C}))$ by central elements, with the comultiplication being twisted by them. In this paper

^{*} Fellow of the Japan Society for the Promotion of Science for Japanese Junior Scientists