© Springer-Verlag 1991

A Semi-Classical Trace Formula for Schrödinger Operators

R. Brummelhuis 1 and A. Uribe 2,*

- ¹ Mathematics Department, University of Wisconsin, Madison, WI 53706, USA
- ² Mathematics Department, University of Michigan, Ann Arbor, MI 48109 and Institute for Advanced Study, Princeton, NJ 08540, USA

Received January 10, 1989; in revised form September 18, 1990

Abstract. Let $S_{\hbar} = -\hbar \Delta + V$ on \mathbb{R}^n , with V smooth. If $0 < E^2 < \liminf V(x)$, the spectrum of S_{\hbar} near E^2 consists (for \hbar small) of finitely-many eigenvalues, $\lambda_j(\hbar)$. We study the asymptotic distribution of these eigenvalues about E^2 as $\hbar \to 0$; we obtain semi-classical asymptotics for

$$\sum_{j} f\left(\frac{\sqrt{\lambda_{f}(\hbar)} - E}{\hbar}\right)$$

with $\hat{f} \in C_0^{\infty}$, in terms of the periodic classical trajectories on the energy surface $B_E = \{|\xi|^2 + V(x) = E^2\}$. This in turn gives Weyl-type estimates for the counting function $\#\{j; ||\lambda_j(\hbar) - E| \le c\hbar\}$. We make a detailed analysis of the case when the flow on B_E is periodic.

Table of Contents

1.	Introduction	567
2.	Statement of Results	569
3.	On the Number of Eigenvalues Around a Given Energy Level	571
4.	The Case of Periodic Flow	575
5.	The Trace Formula for Schrödinger Operators on \mathbb{R}^n	581
6.	References	584

1. Introduction

Consider the Schrödinger operator $S(\hbar) = -\hbar^2 \Delta + V$ on \mathbb{R}^n , where $V \in C^{\infty}(\mathbb{R}^n)$, V > 0. If $V_{\infty} = \lim_{|x| \to \infty} \inf V(x)$, the intersection

$$\operatorname{Spec} S(\hbar) \cap (-\infty, \underline{V}_{\infty})$$

^{*} Research supported by NSF grants DMS-8610730 and DMS-8996279