© Springer-Verlag 1990

Homological Representations of the Hecke Algebra*

R. J. Lawrence**

Department of Mathematics, Harvard University, Cambridge, MA 02138, USA

Received January 30, 1990; in revised form April 17, 1990

Abstract. In this paper a topological construction of representations of the $A_n^{(1)}$ series of Hecke algebras, associated with 2-row Young diagrams will be given. This
construction gives the representations in terms of the monodromy representation
obtained from a vector bundle on which there is a natural flat connection. The
fibres of the vector bundle are homology spaces of configuration spaces of points in C, with a suitable twisted local coefficient system. It is also shown that there is a
close correspondence between this construction and the work of Tsuchiya and
Kanie, who constructed Hecke algebra representations from the monodromy of n-point functions in a conformal field theory on P^1 . This work has significance in
relation to the one-variable Jones polynomial, which can be expressed in terms of
characters of the Iwahori-Hecke algebras associated with 2-row Young diagrams;
it gives rise to a topological description of the Jones polynomial, which will be
discussed elsewhere [L2].

Table of Contents

1.	Introduction												142
2.	Topological Structure												143
	Translation into Algebra												
3.1	Construction of Chain Complex												148
3.2	Form of the Boundaries												152
3.3	Action of the Braid Group												155
3.4	Action of the Symmetric Group											•	159
4.	Examples												160
4.1	m=1 and the Alexander Polynomial.												161
4.2	m=2 and Symmetrisation												163
4.3	Symmetric Group Representations at	а	= 1	l									171

^{*} This work was supported by a SERC studentship grant

^{**} The author is a Lindemann Fellow of the English Speaking Union