Semiclassical Yang-Mills Theory I: Instantons

David Groisser ${ }^{1, \star}$ and Thomas H. Parker ${ }^{2, \star \star}$
${ }^{1}$ Department of Mathematics, University of Florida, Gainesville, FL 32611, USA
${ }^{2}$ Department of Mathematics, Michigan State University, East Lansing, MI 48824-1027, USA

Received December 12, 1989; in revised form July 2, 1990

Abstract

The partition functions of quantum Yang-Mills theory have an expansion in powers of the coupling constant; the leading order term in this expansion is called the semiclassical approximation. We study the semiclassical approximation for Yang-Mills theory on a compact Riemannian 4-manifold using geometric techniques, and do explicit calculations for the case when the manifold is the 4 -sphere. This involves calculating the Riemannian measure and certain functional determinants on the moduli space of self-dual connections. The main result is that the contribution to the semiclassical partition functions coming from the $k=1$ connections on the 4 -sphere is finite and calculable. We also discuss a renormalization procedure in which the radius of the 4 -sphere is allowed to tend to infinity.

0. Introduction

In previous articles ([GP1, GP2, and Gr]) the authors have described the Riemannian geometry of the moduli space of self-dual connections on compact 4-manifolds. In this paper we extend those results to address a question of more direct physical interest: the geometry of the semiclassical approximation to the partition functions for Yang-Mills theories on such manifolds. From a geometric perspective these semiclassical approximations arise as follows.

Given a principal G-bundle P over a compact oriented Riemannian 4-manifold (M, g), let \mathscr{A}_{P} and \mathscr{G}_{P} be the space of connections and the gauge group of P. Let $\mathscr{A}=\mathscr{A}(M)$ be the disjoint union of the \mathscr{A}_{P} over all equivalence classes of bundles $P \rightarrow M$. The quantum expectation of a gauge-invariant function $\Phi: \mathscr{A} \rightarrow \mathbf{R}$ is defined formally as a quotient of two integrals over \mathscr{A} :

$$
\begin{equation*}
\langle\Phi\rangle=\frac{\int_{\mathscr{A}} \Phi(A) e^{-s} d \mathscr{A}}{\int_{\mathscr{A}} e^{-s} d \mathscr{A}}=\frac{Z(\Phi)}{Z(1)} . \tag{0.1}
\end{equation*}
$$

[^0]
[^0]: * Partially supported by N.S.F. grant DMS-8905211
 ** Partially supported by N.S.F. grant DMS-8802885

