© Springer-Verlag 1990

Supermoduli Spaces

S. N. Dolgikh¹, A. A. Rosly² and A. S. Schwarz³*

- ¹ Moscow Physical Engineering Institute, Moscow, USSR
- ² Institute of Theoretical and Experimental Physics, Moscow, USSR
- ³ International Centre for Theoretical Physics, Trieste, Italy

Received April 16, 1990

Abstract. The connection between different supermoduli spaces is studied. It is shown that the coincidence of the moduli space of (1|1) dimensional complex manifolds and N=2 superconformal moduli space is connected with hidden N=2 superconformal symmetry in the superstring theory.

Let W denote the Lie superalgebra of vector fields on $\mathbb{C}^{1,1}$

$$\xi = P(z, \theta) \frac{\partial}{\partial z} + Q(z, \theta) \frac{\partial}{\partial \theta}$$

(here $P(z,\theta)$ and $Q(z,\theta)$ are finite linear combinations of $z^n, z^n\theta, n$ is an integer). It is proved that this Lie algebra is isomorphic to the Lie superalgebra K(2) consisting of N=2 infinitesimal superconformal transformations [1,2]. One can show that this fact is closely related with hidden N=2 superconformal symmetry in the superstring theory [3]. For superghost system (and for a general B-C system) hidden N=2 supersymmetry was discovered in ref. 4. To understand the origin of the N=2 supersymmetry of the B-C system we recall that the fields B and C can be considered as sections of line bundles ω^k and ω^{1-k} correspondingly. However the line bundle ω and its powers can be determined not only for a superconformal manifold but also for arbitrary (1|1) dimensional complex supermanifold M. (If $(\tilde{z}, \tilde{\theta})$ and (z, θ) are co-ordinate systems in M, then the transition functions of the line bundle ω^k are equal to D^k , where $D=D(\tilde{z}, \tilde{\theta}|z, \theta)$ denotes the superjacobian.)

Let us consider a (1|1) dimensional compact complex supermanifold M, a point $m \in M$ and local complex co-ordinates (z, θ) in the neighbourhood of m. (Here z is even, $|z| \le 1$, and θ is odd.) The moduli space of such data will be denoted by \mathcal{P} .

^{*} Permanent address: Moscow Physical engineering Institute, Moscow, USSR Present address: Department of Mathematics, University of California at Davis, Davis, CA 95616, USA