Commun. Math. Phys. 134, 273-292 (1990)

Communications in Mathematical Physics

Quantum Yang-Mills on the Two-Sphere

Dana S. Fine

Department of Mathematics, Southeastern Massachusetts University, North Dartmouth, MA 02747, USA

Received December 21, 1989; in revised form March 16, 1990

Abstract. We obtain the quantum expectations of gauge-invariant functions of the connection on a principal G = SU(N) bundle over S^2 . We show that the space $\mathscr{A}/\mathscr{G}_m$ of connections modulo gauge transformations which are the identity at one point is itself a principal bundle over ΩG , based loops in the symmetry group. The fiber in $\mathscr{A}/\mathscr{G}_m$ is an affine linear space. Quantum expectations are iterated path integrals first over this fiber then over ΩG , each with respect to the push-forward to $\mathscr{A}/\mathscr{G}_m$ of the measure $e^{-S(A)} \mathscr{D} A$. S(A) denotes the Yang-Mills action on \mathscr{A} . There is a global section of $\mathscr{A}/\mathscr{G}_m$ on which the first integral is a Gaussian. The resulting measure on ΩG is the conditional Wiener measure. We explicitly compute the expectations of a special class of Wilson loops.

Introduction

We consider the expectation of a gauge-invariant function f with respect to the formal measure $\int e^{-S(A)} \mathscr{D}A$, where $S(A) = \frac{1}{4} ||F_A||^2$ and \mathscr{A} is the space of all connections on a G = SU(N) (trivial) bundle over S^2 . This measure pushes forward under the projection $\mathscr{A} \to \mathscr{A}/\mathscr{G}_m$, where \mathscr{G}_m is the space of gauge transformations which are the identity at a given point $m \in S^2$. The push-forward measure formally defines a measure μ which differs from the natural measure on $\mathscr{A}/\mathscr{G}_m$ by a factor describing how the size of the orbit varies within $\mathscr{A}/\mathscr{G}_m$. The devices of gauge-fixing and Faddeev-Popov ghosts give a presumably well-defined measure on \mathscr{A} , whose push-forward agrees with μ . This agreement permits us to compute the expectation of f directly on $\mathscr{A}/\mathscr{G}_m$ with respect to the measure μ .

The space $\mathscr{A}/\mathscr{G}_m$ is homotopic to ΩG , based loops on G as shown in Atiyah and Jones [1] and Singer [2]. Section 2.1 presents the homotopy equivalence via a map $\xi: \mathscr{A}/\mathscr{G}_m \to \Omega G$. In fact, ξ is the projection map of the bundle $\mathscr{A}/\mathscr{G}_m$ over ΩG with an affine space as the fiber.

Integration on $\mathscr{A}/\mathscr{G}_m$ is integration over the affine fibers followed by integration over ΩG , with respect to the measures μ induces. We exhibit the measure on each fiber as a Gaussian. Integrating over the fibers defines the push-forward measure