Commun. Math. Phys. 133, 217-247 (1990)



## **Relativistic Toda Systems\***

## S. N. M. Ruijsenaars

Centre for Mathematics and Computer Science, P.O. Box 4079, NL-1009 AB Amsterdam, The Netherlands

Received August 3, 1989

Abstract. We present and study Poincaré-invariant generalizations of the Galilei-invariant Toda systems. The classical nonperiodic systems are solved by means of an explicit action-angle transformation.

## Contents

| 1. Introduction                                    |    |   |   |   |  | 217 |
|----------------------------------------------------|----|---|---|---|--|-----|
| 2. Discovering the Systems                         |    |   | • |   |  | 218 |
| 3. The Lax Matrix                                  |    | • |   |   |  | 220 |
| 4. An Explicit Description of a Special Flow       |    | • |   |   |  | 223 |
| 5. Action-Angle Transformations                    |    |   |   |   |  | 226 |
| 5.1. Generalities                                  |    |   |   |   |  | 226 |
| 5.2. The Nonrelativistic Case                      |    |   |   |   |  | 228 |
| 5.3. The Relativistic Case                         |    |   |   |   |  | 231 |
| 6. Further Developments                            |    |   |   |   |  | 234 |
| Appendix A. Commutativity and Functional Equations | 5. | • |   |   |  | 237 |
| Appendix B. Some Algebraic Lemmas                  |    |   | • | • |  | 240 |
| Appendix C. Real-Analyticity and Canonicity        |    | • |   |   |  | 243 |
| References                                         |    |   |   |   |  | 247 |

## 1. Introduction

In recent years it has been shown that the well-known Galilei-invariant Calogero-Moser N-particle systems admit Poincaré-invariant generalizations. These relativistic particle systems are not only completely integrable at the classical level, but can also be quantized in such a fashion that integrability survives [1, 2]. In this paper we show that relativistic integrable generalizations of the non-relativistic Toda systems [3-5] exist, too. Moreover, we solve the nonperiodic classical systems by constructing an explicit action-angle transformation.

<sup>\*</sup> Work supported by the Netherlands Organisation for the Advancement of Research (NWO)