Implementation of Comparative Probability by Normal States. Infinite Dimensional Case

Simba A. Mutangadura

Department of Physics, University of Zimbabwe, Box M.P. 167, Mt. Pleasant, Harare, Zimbabwe* and International Centre for Theoretical Physics, Trieste, Italy

Abstract. Let \mathscr{H} be an infinite dimensional Hilbert space and $\mathscr{P}(\mathscr{H})$ the set of all (orthogonal) projections on \mathscr{H} . A comparative probability on $\mathscr{P}(\mathscr{H})$ is a linear preorder \leq on $\mathscr{P}(\mathscr{H})$ such that $\mathbf{O} \leq P \leq \mathbf{I}$, $\mathbf{I} \leq \mathbf{O}$ and such that if $P \perp R$, $Q \perp R$, then $P \leq Q \Leftrightarrow P + R \leq Q + R$ for all P, Q, R in $\mathscr{P}(\mathscr{H})$. We give a sufficient and necessary condition for \leq to be implemented in a canonical way by a normal state on $\mathscr{B}(\mathscr{H})$, the bounded linear operators on \mathscr{H} .

1. Introduction and Notation

Let \mathscr{H} be a Hilbert space. $\mathscr{P}(\mathscr{H})$ denotes the set of all (orthogonal) projections on \mathscr{H} . If E is a closed subspace of \mathscr{H} , and $\phi \in \mathscr{H}$ then P_E and P_{ϕ} denote the corresponding projections. We drop the E and ϕ if no reference to the subspaces is required. $\mathscr{P}_1(\mathscr{H})$ is the subset of all one dimensional projections and $\mathscr{P}_{\sigma}(\mathscr{H})$ is the subset of all those projections P_E such that E is a separable (finite or infinite dimensional) subspace of \mathscr{H} . Lower case Roman subscripts as in P_j or P_{ϕ_k} will generally be used for indexing sequences and nets. N, R and C denote the natural numbers, the reals and the complex numbers respectively. All vectors of \mathscr{H} appearing may be assumed to be normalised. $P_{\mathscr{H}}$ is denoted by $P_{\mathscr{H}}$ or just $P_{\mathscr{H}}$ of no confusion arises and the zero vector is denoted by $P_{\mathscr{H}}$. The orthogonal complement of P (i.e. $P_{\mathscr{H}}$) is denoted by $P_{\mathscr{H}}$. If P, P is denoted by P then we write $P \perp Q$.

Definition 1.1. Let \mathscr{H} be a Hilbert space. A preorder relation \leq on $\mathscr{P}(\mathscr{H})$ is called an elementary comparative probability (ECP) iff the following axioms are satisfied by all $P, Q, R \in \mathscr{P}(\mathscr{H})$:

A1 $P \leq Q$ or $Q \leq P$,

A2 $P \leq Q$ and $Q \leq R \Rightarrow P \leq R$,

A3 $0 \leq P \leq 1$, $1 \leq 0$.

^{*} Permanent address