The Large-Time Asymptotics of Some Wiener Integrals and the Interband Light Absorption Coefficient in the Deep Fluctuation Spectrum

W. Kirsch¹ and L. A. Pastur²

 ¹ Institut für Mathematik, Ruhr-Universität Bochum, D-4630 Bochum, Federal Republic of Germany and SFB 237: Unordnung und große Fluktuationen
² Institute for Low Temperature Physics and Engeneering, Academy of Sciences of the Ukrainian SSR, SU-310164 Kh'arkov, USSR

Abstract. In this paper we prove the existence of the interband-light-absorption coefficient and investigate its asymptotics for a number of models.

1. Introduction

The interband light absorption coefficient (ILAC) is an important characteristic of doped semiconductors. By using approximations widely accepted in semiconductor physics this quantity can be written as [1,2]:

$$\alpha(\lambda) = \frac{\alpha_0}{V\omega} \sum_{n,m} \delta(\lambda - \lambda_n^+ - \lambda_m^-) \left| \int_A \psi_n^+(x) \overline{\psi_m^-(x)} \, dx \right|^2 , \qquad (1.1)$$

provided the temperature is sufficiently low and the Fermi energy lies in the gap between the valence and the conductance bands. In (1.1) the constant α_0 is determined by fundamental physical constants and the band structure of the ideal (non-doped) semiconductor. V denotes the volume of the semiconductor sample Λ . ω is the light frequency and $\lambda = -E_g + \omega$, where E_g is the distance (gap) between the valence and the conduction band. λ_n^{\pm} and ψ_n^{\pm} are the eigenvalues and orthonormalized eigenfunctions respectively of the operators H_A^{\pm} , given on Λ by

$$H_A^{\pm} = -\Delta \pm q \tag{1.2}$$

with appropriate (e.g. Dirichlet) boundary conditions on ∂A . These Hamiltonians describe the motions of electrons and holes in the conduction and valence bands under the influence of the random (impurity) potential q(x). The energy levels λ_n^{\pm} are counted from the bottom of the respective band.¹

It is known (see [1, 2]) that the ILAC has several asymptotic regimes depending on the form of the random potential, the frequency interval, etc. In particular, suppose q(x) is a homogeneous Gaussian random field with mean zero and cor-

¹ For simplicity we consider only the case of equal effective masses of electrons and holes. This allows us to normalize the constants in front of the kinetic energy to 1