Commun. Math. Phys. 132, 5-25 (1990)

Localization for a Class of One Dimensional Quasi-Periodic Schrödinger Operators

J. Fröhlich¹, T. Spencer², and P. Wittwer^{3,*}

¹ Theoretical Physics, E.T.H., Zürich, Switzerland

² School of Mathematics, I.A.S., Princeton, NJ 08540, USA

³ Department of Mathematics, Rutgers University, New Brunswick, NJ 08903, USA

Dedicated to Res Jost and Arthur Wightman with respect and affection

Abstract. We prove for small ε and α satisfying a certain Diophantine condition the operator

$$H = -\varepsilon^2 \varDelta + \frac{1}{2\pi} \cos 2\pi (j\alpha + \theta) \qquad j \in \mathbb{Z}$$

has pure point spectrum for almost all θ . A similar result is established at low energy for $H = -\frac{d^2}{dx^2} - K^2(\cos 2\pi x + \cos 2\pi(\alpha x + \theta))$ provided K is sufficiently large.

1. Introduction

In this paper we shall study some of the spectral properties of the operator

$$H_c(\theta) = -\frac{d^2}{dx^2} + K^2 v(x,\theta)$$
(1.1)

acting on $L_2(R)$, where

$$v(x,\theta) = -\cos 2\pi x - \cos 2\pi (\alpha x + \theta). \qquad (1.2)$$

We shall also study its finite difference approximation on $l_2(\mathbb{Z})$ given by

$$H(\theta) = -\varepsilon^2 \varDelta + v(j,\theta) = -\varepsilon^2 \varDelta + \frac{1}{2\pi} \cos 2\pi (\alpha j + \theta).$$
(1.3)

In one dimension the finite difference Laplacian has matrix elements $\Delta_{ij} = 1$ if |i - j| = 1 and $\Delta_{ij} = 0$ otherwise. When α is rational the spectra of H and H_c

^{*} Present address: Université de Genève, Switzerland