

Global Flows with Invariant (Gibbs) Measures for Euler and Navier-Stokes Two Dimensional Fluids

Sergio Albeverio¹ and Ana-Bela Cruzeiro²

- ¹ Fakultät für Mathematik, Ruhr-Universität-Bochum, D-4630 Bochum, BiBoS Research Centre and SFB 237 Bochum-Essen-Düsseldorf, Federal Republic of Germany
- ² Centro de Matemática e Aplicações Fundamentais, I.N.I.C., Av. Prof. Gama Pinto, 2, P-1699 Lisboa, Codex, Portugal

Abstract. We construct a family of probability spaces $(\Omega, \mathcal{F}, P_{\gamma}), \gamma > 0$ associated with the Euler equation for a two dimensional inviscid incompressible fluid which carries a pointwise flow ϕ_t (time evolution) leaving P_{γ} globally invariant. ϕ_t is obtained as the limit of Galerkin approximations associated with Euler equations. P_{γ} is also in invariant measure for a stochastic process associated with a Navier–Stokes equation with viscosity γ , stochastically perturbed by a white noise force.

Contents

0.	Introduction						431
1.	The Euler Equation in Two Dimensions						433
	1.1. General Setting						433
	1.2. Invariant Quantities of the Motion						434
	1.3. The Abstract Wiener Space Formulation	١.					434
2.	The Euler Flow and the Invariant Measures						437
	2.1. The Invariant Measures						437
	2.2. The Euler Flow						438
3.	The Perturbed Navier-Stokes Equation						440
	3.1. Invariant Measures						440
	3.2. The Perturbed Navier-Stokes Flow						441

0. Introduction

The search for solutions of Euler and Navier-Stokes equations in certain spaces of functions is of great physical and mathematical interest. In the present paper we shall discuss the Euler and Navier-Stokes equations for an incompressible fluid.

For simplicity we shall consider a fluid confined in a rectangular box \mathbb{T}^2 , with periodic boundary conditions (or, equivalently, on a 2-torus), but extensions to