© Springer-Verlag 1990

Temperature Correlators of the Impenetrable Bose Gas as an Integrable System

A. R. Its¹, A. G. Izergin², *, and V. E. Korepin³

Abstract. It is shown that the temperature equal-time correlators of impenetrable bosons in one space dimension are described by a classical integrable system. Partial differential equations for two-point as well as for multipoint correlators are obtained. The short-distance and low-density expansions are constructed.

1. Introduction

The Hamiltonian of the one-dimensional non-relativistic Bose gas [1] is

$$H = \int_{-\infty}^{\infty} (\partial_z \psi^+ \partial_z \psi + c \psi^+ \psi^+ \psi \psi - h \psi^+ \psi) dz.$$
 (1.1)

Here $\psi(z)$, $\psi^+(z)$ are canonical Bose fields, $[\psi(z), \psi^+(y)] = \delta(z-y)$ and h is a chemical potential. Only the case of impenetrable bosons is considered below, the corresponding value of the coupling constant being $c=+\infty$. The thermodynamics of the model was constructed in paper [2]. At zero temperature the thermal equilibrium state is the ground state of the Hamiltonian, representing a Fermi zone. All the states of particles with momenta k, $-q \le k \le q$ are filled (here $q=h^{1/2}$ is the Fermi momentum). At temperature T>0, the thermal equilibrium distribution of particles is given by the Fermi weight

$$w(k, h, T) = (1 + \exp\{\varepsilon(k)/T\})^{-1},$$
 (1.2)

where $\varepsilon(k) = k^2 - h$ is a particle energy. Gas density D is

$$D = \frac{1}{2\pi} \int_{-\infty}^{\infty} w(k, h, T) dk \tag{1.3}$$

¹ Leningrad University, Leningrad, USSR

² Leningrad Branch of the V. A. Steklov Mathematical Institute, Leningrad, USSR, 191011

³ ITP, SUNY at Stony Brook, NY 11794-3840, USA

^{*} Permanent address: Leningrad Branch of the V. A. Steklov Mathematical Institute, Fontanka 27, SU-191011 Leningrad, USSR